

LIBRARY
तN B9:18.2 B3

Ac No E 17894
This hook athonid he retaztied on or betore the last date stampod bolow An overdue chatit of 5 alse 24 Paike (Tixt hooks) weth be collebled ins each dat t e haok is wept overtme

BOOK OF INDIAN ERAS.

B O OK

OF

I N DIAN ERAS,

FITM

TABLES FOR CALCDLATING

INDIAN DATES.

BY

ALEXANDER CUNNINGHAM, CS I., C.I.E., major general, boyal englneers (bengal)

[^0]
ORIENTAL PUBLISHERS DELHI-6

PREFACE.

Most of the Tables in this Book were prepased for iny own use so far back as 1859 I had long felt the want of some handy and ready means of calculating Indian dates, ns the process described in Warren's Kala Sankâlita and Punsep's Useful Tables ss both cumbrous and troublesome It struck me that, by substituting decimal parts of days for the Hindu gharre, palas, and vipalas, and by lesseming the number of items to be taken out from the tables, the process would be made much more easy The road in both is the same, but I believe that I have made it both ahorter and amoother The best test, however, of the advantage of my process will be to compare it with one of Warten's own examples for finding the mitial day of both the Solar and Lum-Solar Calendars for the year of Kâl-Yuga 4923 complete $=$ A.D 1822

The following is my process
solar ahargana luntsolar ahargana
Surya Suddhânta, Tablo XII
4900 years $=1789,1689067$ days and
Surya Suddhânta, Tablo XIII

53,6176974
Dd 1800 Lanations 53,155 00̈82

Table XIV
4626392
Dd 15 Lunations
4429587
Conjonction 196805 or 20 days earliar $=$ Satarday, 23rd Maroh Beginning of Luni-Solar jear 1 day leter $=$ Sandiny, 24th March

The following ${ }^{1 s}$ Warren's process See his Kâla Sankalita, p 240, and Tables, pp 65 and 66

Wanted the begnning of the Solar ycar 4923 Kâli-Yuga, wecording to the Surya Siddhênta-

Years	Days	G	V	P
4000	1461,035	1	33	20
900	828,782	52	51	0
20	7,305	10	30	28
8	1,098	51	29	22
	$\xrightarrow{\square}$	-	-	-
	1798.168	51	29	22
Subtract Sodhyam	2	8	51	15
		42	38	7
Divided by 7	1798,166	42	38	7
Remainder				

which, counted from Finday, gives Suta-dina=Thursday
[NB—Here Thursday is a misprint for Fruday, as the large fraction of a day, upwards of 42 ghares, or more than twu-thrrds of a day, is practically a whole day, so that the remander of 6 days +42 ghams is reckoned as 7 days, as noted by Warren himself on page 65 at the foot of Example II, where he states that by the Surya Siddhanta the mitial day is Finday]

Warreu's Luni-Solar example is on page 66 of bis Tables
Wanted the beginning of the Luni-Solar year 4293 Kâlı-Yuga, according to the Surya Siddhânta-

In the tables for finding the corresponding dates for any Hijra day I believe that I have made the process move certan as well as more easy, by the adoption of a table, No XV, showing the number of each day in the Muhammadan year By this means the corresponding Christian day of any Muhammadan date can be ascertannted with sbsolute certainty in a few minutes

The tables connected with the Christian year appear to me to be much sampler than any others that I have met with I piepared thein for my own use in 1859, and I have since had so many oppoitumities of testing their accuracy as well as therr easy working, that I have no hesitation in putting them forward as really useful and handy Tables

For the Tables of the Seleukidan era, I must ciave some indulgence, as the subject is one of much difficulty, partly owing to the meagieness of trustworthy data, and partly to the adoption of the Julian reckoning in the western half of the Syio-Macedonian Empie aftel its annexation to Rome As my object is to tieat of Indian eias only, I have retaned the use of the cycle of Meton with its embolismic months, as I feel quite satisfied that the Julian leckoning was never adopted in the eastern provinces subject to the Bactrian Grecks and Paithians

The present wosk differs from others on the same subject, not only in the greater completeness as to the number of cras tieated of, but also in the greater haudiness and simplucity of ts Tables for calculation I believe, therefore, that this "Book of Indian Eias" will help to supply a want, which has long been felt, in its numenous tables for the calculation of any Indian dates by easy and simple processes

The most useful woiks on Indian Measuics of Time that I am acquanted with, ale the following -

Warren's Kala SankSlita, 1825
Jervie's Weightm, Mewures, and Colar of India Prineep's Useful Tables, $183 \pm$
Cowesjee Patell's Chronology, 1866

Colonel Warren, who belonged to the French family of De Warenne, was one of the officers of the Great Tiggonometrical Suivey $H_{1 s}$ work gives an elaborate exposition of the Hindu solai and lunt-solar measures of time with an account of the Vinhespati Chakia, or Jupiter cycle of sixty years, and a memoir on the lunar year of the Muhammadans At the ond he has given a series of very useful tables for faclitating the computation of Indian dates The Kala Sankalita as valuable for its accuracy, but its Tables are rather cumbrous and tioublesome for any Jarge number of calculations My own Hundu Tables ase sumpler and
easien to work with than Warren's, but they are essentially the same, aud were, in fact, based upon his elsborate and more cumbrous processes

Jeivis's Measures of Time form only part of his large work on Indian Weights and Measures His Muhammadan calendar is excellent; but his list of the corresponding years of the Vikramaditya Sanbat is entirely vitiated by his adoption of the wiong initial point of the era as 56 BC , instead of 57 or $56 \frac{3}{2} \quad \mathrm{H}_{1 s}$ account of the 60 -year cycle of Jupitei 19 limited to the corrupt form in use in Southern India

James Prinsep's Useful Tables are founded alanost entirely on Warren's Kâla Sankâhita But his tabular forms are much more handy than those of Wairen, and his calendric scales foi ascertaining corresponding dates by simple inspection are a really useful invention. For lus own use he hadw ooden cylinders prepared round which the scales were pasted, so that the initial day of any Hindu or Muhammadan year could be set at once to its corresponding date in the Christian calendar. There are several misprints, but the only selious one is in the table of Hindu sidereal years, where the mitial days of the Christian years on the left hand from AD 1753 onwards are continued in Old Style, while the initial days of the corresponding Hindu years are given in New Style right down to the end Thus the present year AD 1882 is made to begin on Friday (which 18 OS), instead of on Sunday (NS), while Tuesclay the loth April is given as the beginning of the Hindu year in NS

Cowasjee Patell's Chronology $1 s$ an extremely useful practical work, as it gives a large number of coiresponding lists of jears of different eras "in use among Parsis, Jews, Greeks, Hindus, Muhammadans, Chinese, Japanese, \&uc The bref accounts of the eras are generally taken from Prinsep, as well as the rules for calculating the dates The Tables are singularly free from misprints, but whilst I was salculating my own Tables and comparing them with his, I found the following errata, which may be worth noting by all those. Who possess a copy of his work

In A D 141 and again in AD 543, the name of the intercalary munth has been owntted

In AD 999, for 19th March, read 21et Merch
————1168, for 15th March, 1 oad 12th March
————1169, for 4th March, 1 tad 1 st March
——— 1344, fur 15th Maroh, , ead 16th Maroh
——— 1597, for 7th April, read 7th March
—— 1655, for 26th Februsry, road 28th March.
——— 1889, for 1ot April, road 11 th April.
\longrightarrow 1883, for 15th April, road 13th Apnil.

A very curnous coincidence of dates came accidentally to my notice
duning the past cold season At Boram Dco in the Cential Provinces I found several inscribed Sati Pillars, two of which gave the name of the year of the 60 -year cycle of Jupiter in addition to the Samvat date These two inscriptions are recorded as follows -

> A - Swarti Samvat 1430 gamayo
> Sudharthi nama Savachhara
> B - Samvat 14f; Bhuva nama
> Samvatsara Aukina bads i3 Some

As Boram Deo is in Chattisgarh or Mahâ Kosala, which former the old kingdom of the Chedis or Kalachuis, 1 thought it most probable that these dates were reckoned in tho Chedi on Kalachun Samvat of which the initial point, as \mathbf{I} have previously shown, was A D $249=0$ Reckoming from this starting point, the date of A would be $1430+$ $249=1679$ A D, which was actually the year Sidbâithi, according to the computation of the cycle in use in Southern India

Similaily the datc of B would be $14 \div 5+249=1694$ A D , which was actually the year Blâva of the Southein reckoning

Here then I thought that I had found a clear proof that the Cheds or Kalachuri era had continued in use down to AD 1694 But when I proceeded to calculate the week day of B, I found that at did not agree with AD 1604 It then struck me that the Samvat might be that of Vikramaditya, according to which the date of A would be $1430-57=1373 \mathrm{AD}$, which to my surpuse proved to be also the yeat Sidhârth of the Northern reckoning of the 60-year cycle Similaily the datc of B would be $1445-57=1383 \mathrm{AD}$, which was also the yeai Bhâva of the Noithein reckoning On calculating the week day of B. I found that it agreed exactly with the Vikiamêditya Samvot, as the 13 th of Aswina-badi in Vik Sam 1445 was actually a Monday Without this mention of the week day, the truc equivalent of thesc two dates would, therefore, have been doubtful, and I should ceitainly have been melined to 1 efer them to the Chedi era

Of course, this conncidence could only happen within the limit of the $86-y$ ear period in which those two dates arc meluiled, as the omission of every 86 th name of the Jupitci Cycle in the Northein reckoning would make all the carlier northern names latc, and all the latter oncs earlier

Since the text of this book was printed, a notice of my attempt to fix the date of the Gupta era has been published by Dr Thibaut, Principal of the Benares College* His lemarks are confined to the calculations

[^1]based on the I2-year cycle of Jupiter, as he considers it highly probable that the modern system of Hindu astronomy, with its farly accurate knowledge of the planetary revolutions, "was not well established before AD 400" This I fully admit as fai as the existing Siddhântas are concerned But the fact that the Macedonian montlis wete in use in Noithein India, certanly during the lst and 2nd centuries AD, offers, in my opimion, a clear proof that the people of Noith-Western India had adopted the Macedonian era of the Seleukidæ Now the Grecks of Alexander's army must have brought with them the calendal of Meton, which was a lumi-solar cycle of 19 solai years of $365 \frac{1}{2}$ days each, or 235 lunar months* But this 18 the vely cycle that $1 s$ still used by the Hindus themselves, and I have very hittle doubt that they must have corrected the old erroneous reckoning of Garga by the Gieck calendar of Meton

If this conclusion be right, then the Hindus of the lat and 2nd centuwes A. D must have had a nearly accurate knowledge of the length of the solal ycar, the amount of error being only one day in 76 y ears It seems to mo, thecefore, not improbable that a fanly accunte allaptation of the cycle of Jupiter to the reckoning of the solar year may be as old as the time of the Indo-Scy thians, who made use of the Macedonian calendai in theil msenptions Of course tlus is not a proof that the reckoning of the Aryand Surya Sildhântas was in use at so early a peitod Butit is, in my opinion, a vely strong argument that a nearly accinate seckoning must alteady have been adopted

I am peifectly aware that the date of the Gupta cra is still unsettled, but there $1 s$ one fact that is strongly in favour of the early period that I have arrived at,-namely, the date of AD 319, which is assigned by Abu Rihân for the extinction of the Gupta domimion Now the last of the gieat Gupta kings was alinost certanly Skanda Gupta, and as we have a copperplate inscription dated in the year 146, during his ieign, the initial point of the era cannot well be placed later than $319-146=173$ A D , that $1 s$ within seven years of my proposed date I, therefore, adliere for the prescnt to the year 166 AD as a convenient date, which cannot be far from the truth In fact the two inscriptions of King Jaika, if they belong to the same person, are very strongly in favour of my date One of these is dated in the year 794 of the Vikiamâditya Samvat, or A D 737-38, and the other, from Morbi, is dated in 595 of the Gupta eia Deducting 595 from 738, we get the yeai 143 AD, which 1823 years ealler than my date But if we accept my date as a near approxination to the truth, we obtain $166+595=761 \mathrm{AD}$, as the date of the

[^2]Morbi mseription, which would give King Jaika a reign of 23 years fiom 738 to 761 A D *

In Table XVIII I have added a list of echpses, both lunar and solan, from the beginning of the Chistian era down to AD 2000 These have been taken from the celebiated Fiench work "L'Art de verifier les dates"-_Vol I, 8vo, 1818 In the orgganal woik the hour of each echpse is given for the mendian of Pails These I have omitted for want of space While copying out the dates, I have noted a few errors and omissions, namely -
A. D 13t1, for Lanar Eohpee, 13th May, read 3Ist May

A D 1392 for Lunar Echpse, - Sept, had 2nd Sept
AD 1488, far Solar Eclipse, 9th July, 1 ead Lunar
AD 1916, for Lunar Echpse, 8th January, 1ead 18th
To show how easy it is to make mistakis in dates, it will be sufficient to state that the Emperox Babber has given the wiong date for his own famous battle of Kbânwa, in which he defeated Râna Sangrâm of Mewâr Balier says that it took place on Satuiday, the 13 th of the second Jamâlı, A H 933, which both Eiskine and Dowson make the 16th March AD $1527 \dagger$ That the name of the week day $1 s$ correct we learn fiom Shekh Zein-uddin, who repeats the name in the following quotation from the Korân "Since God has given a blessing on your Saturday" But tho 13 th of the second Jamâdı was a Sunday as wall bo seen from Bûbery own statements of othet dates in the same year Thus he calls-

24th Muharam	993		Wudnesday
15 th Safar	"		Wednesday
16th Rabs I	"	-	Fiuday
9th Jamadı I	"		Monday
14th	"		Satuday

All of these dates bring us to Monday as the 30 th or last day of Jamâdi I, and to Tuesday as the lat of Jamadi II Consequently, Suturday was the 12 th and not the 13th of that month-a fact which has escaped tho notice of both Elskine and Dowson

With reference to the intercalary months of the Hindu lum-solar year, I may mention that there is a great divergence between the published lists of Jervis and Cowasjee Patell \ddagger At page 91 I have quoted the native rule as given by Warren and Pınsep, and the following example will show that the table pubhished by Jervis 19 certunly wiong

[^3]In the Saka yeal 1091, or A.D 1168, the month of Srâana was intercalaity as recoided in an inscription of Vyaya Pandya Deva* At that date the luni-solar year began on the 1st March, and the solar year on the 24th March The 23rd March was, therefore, the 31st day of the solar month of Chaitra, and the 1st March was the 8th day of the solar Chattra Now, accoiding to the native rule when the luni-solar year begius on the 6th, 7th or '8th of the solar month of Chaitra, then the month of Srâvana will be iutercalury Tuining to my Table XVII, page 175, it will be seen that in the year A D 1168, or Saka 1091, the month of Srâvana was intercalary That it was an intercalaiy year is proved absolutely by the initial date of the following year Saka 1092, which is 20 days later, and therefore the year 1091 just ended must have consisted of 13 lunar months

But Jeivis makes the year 1091 Saha a common year, and assigns the intercalary month of Srâvana to the year 1003 Saka. The Patell's year of intercalation are correct, and so also are his names of the intercalary months so far as I have had leisure to test them

ALEXANDER CUNNINGHAM

CONTENTS.

INDIAN ERAS
PREXACF Page
1
B C Aucient Indian modes of reckoning time
10
10
16777 Suptaishe-lant, or Cyoie of the Seven Rishis
16777 Suptaishe-lant, or Cyoie of the Seven Rishis
18
18
113128 BARHASPATYA KAL, or 60 year Cycle of Jupter
113128 BARHASPATYA KAL, or 60 year Cycle of Jupter
26
26
IV 3102 KALI YUGA, or beginming of the Kali ase 41
V 1177 Parasurama Cbakra, or Cycle of jor(y yeara 49
VI (t) Nirvaiva of Meddlea, or Buddbast Lra 34
VII $\vdots 27$ Nirvana of Malearoa or Jama Era 37
VIII 312 Era of the heleukidx 38
IX $2 \not 27$ Era of Purtha 46
$X 57$ Vineama-Sampat 47
XI 2* Grahodpariverthi Chakra of 10 geais 51
$\Delta \mathrm{D}$
KII $7 E$ SAKA-BHUPA-ǨAL or Laa of the Saka King 52
XIII 166 GUPTA KAL, or Gupta Eia 53
XIV 249 Ched, or Kaluchin, Simvat 60
XV 319 Balabhi-kâl, or Lur of liqulht 64
XVI 607 Srı Harsha Era 64
XVII 622 HIJRA or Muhammilan Eia 66
XVIIJ 639 Burmese Common Fra 71
X1X 880 Newar Era of Nepal 74
XX 1016 Chalukya Era 75
XXI 1106 Lakghmana Sena Era of Bengal 76
XXII 1114 Siva Singha Sainvat 81
XXIII 1556 Fash Era of Benga! 82
XXIV 1556 Ilahi Era of Akbar 88
XXV 1 CHRISTIAN Era 85
XXVI Seura Mana, or Hindu Yola Caloadar 88
XXYII Chandra Mana ol Luma-Solar Calep̣dar 90
TAISTEB
Churtsan Era
No I Week days for one yeal 97
II Initaal dayg of yoars-Juhan Old Style roekoning 88
, III Intial days of yearg-Gregorian reokoniag 99
" IV Noaber of dajs from 1st Janaary to 31st Deember 100
IV CONTENTS
Scleuktan Eta
No V Omitted days of the Macedonian Cycle of 19 years 101
V1 Initial daye of two Attic and two Macedoman Cyclea, BC 310 to 311 IO2
" VII Initanl days of Seleukidan years, BC 310 to A D 222 103-106
Indian Eras
No VIII Namber of days in the Hindu solar year 107
IX Initial dates of Hindu solar gear 108
X Number of days in the Findu lami solar year 109
XI Solar Ahargana of Aryahhatta 11011
XII Solar Ahargans of Sarya Siddhenta 112-13
XILI Lunk Solar Ahargang of Surya Siddhanta 114-15
" XIV Number of daye in Lnnationa 116-17
Avhammadan Eia
No XV Number of dnys in the $H_{1 j}$ ra year 118
" XVI Initial days of Mijra years 119-134
No XVII General Table of corresponding dates, B C 60 to A D 1950 135
XVIII List of Echipses 204
XIX The Dakhini Cycle of Jupiter 224
XX Initial drys of Llahi ycara 225
XXI The Abjad 2.6

ERRATA

Page 7, line 22, for 'Kalh-Yuga,' read "Kalz Ynga,' and the same correction in other piacon.
Page 25, No 49, for ' Sanmya,' road 'Sananya'
Page 42, inne 2, for ' $165-164$,' read ' 166 -165 ${ }^{\text {' }}$
\longrightarrow, line 10, for ' $165-164$,' read ' 166165 "
———, line 11, for '161-160,' read ' 162-161'
———_, line 12, for ' 139-138,' reat ' 140-139'
———, Line 13, for '129-128,' read' '130-129'
Page 58, line 24, fon 'any,' read 'my'
Page73, line 2 insert ' Z uru,' after 'Dhamma'
—_, line 19, for ' 1929 ' read ' 1029 '
Page 83, line 23, for 'Snah,' read 'Sanh '
Page 86, hne 36, for ' of the jear,' road 'to the jear'
Pago 164, opposite A D 820, intert, in Jet aud Jrd colnmen of Jupitar Cyeles, two black circles, to ehow that two names havo been omitted
Page 168, opposite A D 945, in oolumn 3, for '29;' real ' 22 '
Page 169, opposite A. D 972, in column of mitial days, for 'T" 19," raad " Mo 18 '
——_, opposite A D 974, far ' Mo 26 Fob' read ' 77 '
Page 186, opposite A D 1496, fer' We 16 Mar 'read 'Tu 15 '
Page 224, hne 2, should read " m whuch each year has a separnte name"
$N B$-Page 45-add at foot
If the correotion of Kallippus of 1 day in 76 years had been adopted by the Selenkudm, then tho year 2 of thoir era would have begun on the 2 nd October 312 BO , and every suoceeding 77 th year wonld also have begun on the eame day of the oorreaponding Christian year Thas the following gears of th3 Seleukidan era would all have begun on the 2nd Ootober -

An Sol	1,	77,	153,	229,	305,	381.	467,	533,	609
In B C	312,	236,	160,	84,	8 ,	A 1 69,	145,	221,	297

The fact that the battle of Arbela was fought on the 2nd October 331 BC , near the end of the month of Gorpimns, shows that the Maoedouans of Alexander's army had not adopted the correated Calendar of Kallippus, otherwise the 2nd of October would have been the lat of Hyperberetseas
$\boldsymbol{N} \boldsymbol{B}-\mathbf{P}$ 95-add the following paragraph -
When the given date falls in an intercalary jear after the intercolary month, then 30 daye must be added to the number of days given in Table X Thus, if the given date should be 10th Mégha-sudi and the year be an anteroalary one, 90 days mast be added to the number of 305 daye given in the Table, nnlees the intercalary month ehonld happen to be Phslguna, which being later in the year, would not affect the month of Magha

BOOK

UF

I N D I A N E R A S.

ANCIENT INDIAN MODES OF RECKONING TIME

The natural divisions of time-years, months, and days-have, in all ages, been determued by the motions ot the sun aud moon In India the day was reckoned from fannse to sumise, the month, from one moou to unother moon, and the year, from the beginning of one season until its return

The moat ancient year probably consisted of 360 dayn, which a,prosimated roughly to twelve revolutions of the moon and onc of the sun In one of the hymins of the Iig Vola the sun's annual couise through the hearcins 19 descibed as han iwhosopolucd wherl* The 360 day 4 , with as many niglite, ane called his 720 childen In another part of the sane hymn the suns annual courve is somew hat differently described "The felloes are 12 tho wheel is 1, 3 are the asles within it aie col'ecterl 360 spokes " \dagger Here the spohen represent the number of lays the asles are the three soasons of Heat, Rarn, and Cold, and the 12 felloes are the 12 months

But the great differenco of 11 days between 12 lunations and 1 revolution of the sun must soon have led to the establishment of the old cycle of 5 solar years and 62 lunations Taking the solar year at $365 \frac{1}{2}$ days, and the moon's revolution at $29 \frac{1}{8}$ days, the 5 solar years would have been $1826 \frac{4}{4}$ clays, while the 62 lunations would have been 1829 days The differenet of 23 days in the lustrum of 5 years would have made a yeuly difference of upwards of half a day The five years consisted of three ordinary years of 12 lunar monihs, and of two years, the 2nd and 5th, each with an interealary, or thirteenth month

[^4]This intercalary, or thirteenth month, is very plannly alluded to in the Rig Veda,* where Varuna is sad to know the 12 months, "and that which is supplewentarily engendered," or, as Dr Max Muller has it "He knews the 12 months with their offisping, and knows the month which is produced in addition " \dagger

Dr Max Muller also notes that, "In the hymns of the Yajur Veda the 13th month is changed already into a deity Oblations are offered (Vâjasan Sanhita, vil, 31) to each of the twelve months, and at the cnd one oblation 18 made to Anhasaqpati, the deity of the intercalary month, In the Brahmanas hkewise the thuteenth month 19 mentioned, and in the Jyotisha the theory of intercalation is fully explaned" It seems certain thereforo that the intercalary month was well known as early as the Vedic Period

Each year of this five-year cycle, or lustrum, had a separate name This umportant fact was first made known by Colebrooke from the Whie Yajur Veda The same names are alsu given by Vaiaha Mihira, who says \ddagger "The first year of each lustrum, called Samvutsara, is (ruled by) Agni, the second, Parvatsarc, by the Sun, the thind, Iddeatsara, by the Moon, the fourth, Anuvatsina, by the Cicator, and the last, Udavatsara, by Rulra" But the passage in the Fajur Veda goes on to say "May mornings appertain to Thec, may days and nights, and fortizights, and months, and seasons, beloug to Thee" Here then we see that, as early as the time of the Yajui Verla, the whole system of lunar months, with thels hight and dark fortnights, and of intercalary months, to adapt the luval months to solar reckoning, had already been establushed §

We have another testimony to the early use of the lunar fortnights in a passage of Quintus Curtius, whose information must have been obtained from some ot the wisters who accompanied Alexander the Great \| "Their months cousist of fifteen days, but they keep the

[^5]full year They reckon time by the course of the moon, not as most people do, but by half-moons"

We also learn the same thing from the insci iptions of Asoka, which are about eighty years latel than Alexandel Thus in the serarate edicts at Dhauli we find mention of the month of Traya (Masi-cha Tise) of the lunar fortnght (athama palchayr, is the 8th day of the palesha), and of the three seasons (tzsu chatum-Maszsu, or the thee four-monthly periods) On three days the slaughter of anmals also is torbidden, namely, on the day of 'fullmoon,' punnamâsz (called also pannadasam, or the 15 th day), on the 14th day, and on the day after the conjunction.

The old ycar was divided into three seasons of Heat Rain, and Cold, called Ginshma, Varsha, and Hemantr,-all of which names are found in the Indo-Scythan inscriptions They are also commonly known as Dhup-kal, Barhha-kâl, Sît-kâl *o in Ceylon the rany season, or Wasso, still consists of four montlis, and extends from July to November In ancient times, however, Wusso on Varsha extended from June to October, but owing to the gieater leugth of the Indian year the seasons fall back about one day and-a-half in every hundred years At the present time che solar year begins on the 13th of April instead of on the 21 st of March In consequence of thas difference the beginning of Varsha, or the rainy season, in the times of Alexander and Asoka, would have fallen just one month earlier than at present

In the Indo-Scythian inscriptions fiom Mathura, the fortnights are not designated as light and dank or the waxing and the waning of the muous, but are numbered throughout earh season as the 1st, 2nd, 3rd, \&c, fortmghts of the hot, the ramy, or cold season Thus one of Vasudeva's inscriptions is dated in

Sam 83-Gr 2-D2 10
that is, Samvatsara 83, Grishma 2 Paksha, Duvxsa 10, or, "on the 10th day of the 2nd fortnight of Grishma in the year 83" But as the names of the Hındu months of Chaitra, Vaısâkha, Ashadha, and Sravana ale found in the Indo-Scythian inscriptions from Gandhatra, along with the Macedonian names of Dansios, Apellaios, ana Artemisios, during the reigns of Kanishka and Huvishka, it is difficult to say which of the

[^6]two systems of namung the lunal fortnights may bo the older I have a suspicion, however, that the indigenous nomenclature may have been by numbering and that the other method of waxing and waning fort-
 ф日ivourac

The oldest eras described by the astronomers are the Saptdishr-Kal, or cycle of the seven Rishis, the Barhaspatya-Mdnas, or sixty and twelve y ear cyeles of Jupiter, and the Kalı-Yuga, or legnnning of the Kâli-Age Not one of these mounts up to the exaggeiated periods of thousands of milhons of years like the monstrous ivctems invented by the astronomers The oldest of them, the Suptarsh-Kall, ascends only to B C 4077, on perhaps to 6777 BC , whle the Barhaspatya-Mana and the Kâli-Yugra reach only a little beyouil 3000 BC In Alexander's tıme the Hindus did not claim a greater antiquity than BC 6777 I have therefore a very strong suspicion that the present extravagant system of Yugas and Mahâyugas, Manwantaras, and Kalpas, was an invention of the astronomers, which they based on then newly-acqured knowledgo of the procession The problem was a smaple one Given the precession of 498 seconds, as determined by IIipparchus, the period of one rovolution though the whole errele of 360° would be $26,024 \mathrm{~T}^{18}{ }^{18}$ years To obtain a whole number of years the fiaction was got ind of in the usual way by multiplying 26,024 by 166 , and adding 16 to the product, a process which gives a penod of exactly 4320,000 years, or just one Fuga

It may be objected that the Hindu astronomers did not adopt the precession of Hıpparchus But this wall not alter the case, as theur own determinations of the precession give precisely the same reault The precession fixed by Parâsara is 465 seconds, and that of Aryabhata 462 seconds Following the same process as before, we obtan for Parâsaia $27,870 \frac{1885}{85}$ years as the period of one revolution, and $28,051 \frac{18}{26} 4$ years for Aryabhata, both of which periods give the same whole number of $4,320,000$ years. Exactly the same result is also obtanable fiom the European piecession of 501 seconds, whieh gives a period of 25,868 ${ }^{4}{ }^{4}$ t years for one revolution, and a whole number of $4,320,000$ years

But if this be the true origin of the Hındu Yuga and the monstrous system of Mahdyugas, Manwantaras, and Kalpas, it follows that some other mode of luckoning must have been in use before the Christian ela Now the only parly eias used in Northern India, of wheh detarled accounts stall remain, are the cycle of the seven Rushis, the two cycles of Jupiter,
and the Kâlı-Yuga The Saptârshı-Kâl is unknown in Southern Indıa, but the Kih-Yuga and the 60-year cyele of Jupiter ale well known, bendes che two cycles of Para-uiana and Grahapmivithi, which are peculiar to Southern Inlia The elas of Buddia and Mahâvia, both of wheh are prior to Vikiamâlitya, must have been used ly the Buddhints and the Jains at an carly penod The former was certanly cuntent amongst the Buddhists in the tinno of Asoka, and the latto was pobably in use about the same peisod In the Mathura inseriptions of the Indo-Scythan kings, whech are found upon the statues of both Jains and Builhists, the dates are invariably expresed in au era which may have onginated with Kamishka, but which was most probably only an Iudian a loption of the Seleukıdan eta as suggested by Mr 'Ihomas

In dealing with Indian dates there is one fact that must never be forgoten, namely, that every year that is mentroned by number, that number rofers to years actually clapsed, just as Eusopeans reckon then ages When a man says that he is 30 yeass old, he meam htorally that 50 full years lave passed smee his buth, and that he as then m his ofat year So when a Hindu sceords the yuar 80 of the Vikrama Sanvat, or any other cra, ho muans that 80 full seans of that era have actually elapsed, and that the current year is the 81st

Only one inscription to my knowledge has yet been found dated in any of the intercalary months This is no doubt due to the entue want of festivals 10 these months, and as grants of land ase usually made on the festival days, thene are of counse few inscirptions recorded in the intercala, y months

I.-SAPTÄRSHI-KÂL ;

on,

CYCLE OF THE SEVEN RISHIS

The Sapt-Rwhi-Kal, or "Cycle of the Seven Rushis," called also the Saptdrshu and Sat Rulchu Kal, is so namod after the seven stass of the constellation of the Freat Bear It is the only mode of reckonng employed in the Râja Taranginn, or History of Kashmı, and it is still used in the hill states to the south-east of Kashmir between the Chenâb on the west and the Jumna on the east The general use of this cycle dud not escape the notice of Abu Rihan, who has preserved much valuable information regaiding the different centenary cycles in use at the time of Mahmud's invasion of Iudia
"In Indıa," he says, " the vulgar leckon by ages, and thrge ages follow one after another This they call the Scmeatsana of a hundied When one century as passed thcy drop at, and legin another They call this the Lok-Kal, or 'People's Era'" * Now this last 18 the same name that is used by Kaluana Pandit of Kashmir, who says \dagger

Lauhizebde chaturvinsate Sahahâlasyn sumpratam
Saptatyâtyadhıham yâtam sahcsram palvotsarah
> "The 24th year of the Laukika corresponds with the year 1070 of the Saka-Kal "

From this statement we learn that the year 1 of the Laukika comcided with 1047 of the Saka, or AD 1025, and as the cycle was a centenary one, the finst year of each century must have eorresponded with the 25th year of each Chistian century This is placed beyond all doubt by the following facts -

1 -In the Temple of Baijnath, in the district of Mand, there is an unscription which bears the two dates of Sake 726 and Lok-Kal 80 Deducting 79 from each date we obtain the Sakc year 647, or A D 725, as the first year of the Lok-Kal century

[^7]
2 -Captain Patrick Gerard of the Gorkha Battahon, then stationed

 at Kotgarh on the Satle, heads one of his notes as follows - "Kacha Sambat, or year 2, or 1826-27, Kotgarh, June 25th, 1826 " By thas aecount the yoal $182 \bar{a}$ A D was the first of the Kacha Sambat, or Sapt-Rishr-Kal, of 100 yearsI first became acquanted with the survival of this mode of reekoning in 1846, when I was employed in the Kangra distriet It was commonly called the Sat-Richr-Kal, but was also well known as the Pahdri Samvat, or "Hill era" In the same year I obtamed further information about it from Wazir Guadun, the astute inmister of the Mand state, who accompanied me to Ladâk Fiom him I learned to read the dates on the Sau Pillars of the Mandı Rânis Again, in 1859, on my return from Burma, I made new enquiries in Kashmir and Kângra, in Mandı and Kullu, as well as in Kotgarh and Rimpur on the Satej I then found that the Pandits of Kashmin still preserved the fanciful mode of leckoning the Lok-Kal, which was inventect by the astronomers, and afterwards adopted by Kalhana Pandit in the Rêja Tarangini All other accounts aguee in makng the Sapt Rishu cyele older than the Mahâhhâata But the astionomers differ altogether fiom the common opmon which has been generally adopted thoughout India According to the almost universal beltef of the people the period of the Gieat War, or the era of Yudhıshthira, was also the begınming of the Kâlı-Yuga That this was also the popular belref in former days is proved by the expheit statement of Abul Fazl," that "In the beginning of the fourth or present Yuga, Râjâ Yudhishthira was universal monarch, and the commencement of his reign became the epoch of an era, of which to this time, being the fortueth year of the reign, there have elapsed 4696 years" Now the fortieth year of Akbar was AD 1595, which, dedueted fiom 4696, gives BC 3101 as the penod of Yudhishthira as well as of the KaliYuga In another place also he states that the Mahêbhêrata was "carried on in the latter end of the Dwâpara-Yuga And in a third place he says that the wal happened one hundred and five years before the end of the Dwâpara-Yuga, and $4831+$ years before the fortheth year of Akbar But Abul Fazl had also heard of the date mented by the nstrunomers, aq near the close of his work he piaces the regn of Kansa, râjâ of Mathura, ' above 4000 years before the fortueth of Akbar," that is between 2400 and 2500 BC

[^8]On one point all accounts agice-namely, "that the Munis (or Scven Rushis) weic in Maghai when king Yudhishthira reigned over the earth" But the popular beluef assigis the same position of the Seven Rushes to be leginning of the Kali-Yuga also

According to the astronomers the era of Yudhishthirn varied from 600 to 606 yeara after the begnming of the Kâh-Yuga But their determinations depend on such groundless assumptions that they can only be looked upon as mere astronomical fancies Both Parâsara and Aryabhata assumc that the levolutions of the Seven Rishis began with the commencement of the Kalpa of 4,320000,000 years, and that the numher of ther revolutions in thes periorl was $1 ; 99,998$ But they differ slightly in the number of years elapsert before the begmong of the Kâlı-Yugn, which the fomer makes $1,972944,000$, whe the Jatter has 1,969 420,000 Acconiling to Paiâsara-
$\begin{array}{lllll}\text { A44320000,000 } & 1972944,000 & 1509,998 & 730,7190866\end{array}$
or $10,000 \quad 4507$
that 19 , at the lequming of the Kâli-Yuga the Seven Rishn, had aecompluhed 730,71) complete revolutions plus 0866 of a revolution Multipling tha fiaction by 2,700 years. os ond whole sevolution, we get years 2388200 of a revolution cxpired befor Kah-Yuga began Then as the Gicat War took place when the siern Jhalis were in Maghî (the 10th Nakshatia), we must deduct the 23382 from 900 , by wheh we obtain 66018 years of Kâli-Yuga expred at the date of Yudhishthira

By a sumilar process for Aryabhata, we get 6024 ycars of Kalt-Yuga expued as the date of Yudhinthra, and by repeatmg the process for Varcha Mihna, we get 653 Kâh-Yuga as hus date of the Mahâblârata The last is the date adopted by Kalhana Paudit, who says + "When 653 years of the Kâh-Yuga had espired, the Kurus and Pândavas flounshed"

This fanciful date avented by the astronomers 18 noticed by Abu Rihân as the Pându-Kâl, on "cra of the Pandus," which was different from the Kàlı-Yuga, but he omits to mention its starting point \ddagger

The theory of the astronomers is in ducct opposition to the explicit statements of the Purânas, which are in complete accord with the common belief§ Thus the Vishnu Purâna says -" When the first two

[^9]stars of the Seven Rish1s (the Gieat Bear) rise in the heavens, and some lunar asterism is seen at night at an equal distance between them, then the Seven Rishis continue stationary, in the conjunction, for a hundred jears of men. At the burth of Parikshit they were in Maghd, and the Kall-age then commenced, which consists of 1200 (divine) years When the portion of Vishnu (that had bcen boin from Vasudeva) returned to heaven, then the Kâh-age commenced "*

The Bhâgavata Purâna agrees with the Vishnu Puiâna in placing the Seven Rishis in Maghâ at the time of the Gieat War Thus Suka, addiessung Purihshitce, says "Of the Seven Rishis, two aie first perceived rising in the sky, and the asteriscu, which is observed to be at night even with the middle of those two stars, is that with which the Rishis aie united, and they reman so during a hundred ycars of mon In your time, and at this moment, they are situated in Maghâ'
"When the splendour of Vishnu, named Krishna, depaited for heaven, then did the Kill-age, durng which men dehght in sin, invado the woild Sulong as he contirued to touch the earth with his holy feet, so long the Kâlı-age, compising 1200 (dıvine) yeara, began" So also Nristuha "expounds the Sâkalya Sanhita, and rejects Vaiaha's rule as disagreeing wrth the Purânes" \dagger

Vaı aha himself quotes Vriddhs Qarga for his account of the cycle of the Seven Rishis \ddagger His words are " 1,2 I shall tell, accolding to the theory of Vriddha Garga, the course of these Seven Seeis, by whom the northern region 1s, as it were, protected, though whom she shines, as if adorned with a sting of pearls, hike a madien with joyful countenance, wearing a wieath of white watcr-lilies, thrise Seven Seers, by the turning round of whom the northern region seems dancing, the pole-star being the regulator.
" 3 The Seven Seers were in Magh\& when king Yudhıshthira ruled the earth, and the penod of that kng 192520 years before the Saka era
" 4 They remain moving for a hundred years in each lunar mansion, and rise constantly in the north-east, together with Aiundhati"

[^10]\ddagger Dr Kern'e Translation of the Brihat Senuita, 0 mili, $1 —$

Bat unluckily for Vardhe Mihura his commentator, Bhatta Utpele, has given us the very words of Garga, who simply says *
"At the junction of the Kalu and Dwdpara ages, the virtuous sages, who delight in protecting the people, stood at the asterism, over which the Pitis presido (that is Maghê)"

On comparing this quotation with Valaha's statement, we see at once that he has suppressed Gaiga's mention of the beginning of the Kali-Yuga to suit his own astronomical fancies Now Garga states most explicitly that the Scven Rishiss were in Maghâ at tho beginning of the Kâh-Yuga, and says nothing whatever about Yudhshthra But the fact that the Rishis were in Maghâ at the time of the Gieat War was too well known to be altered, and so Varâha accepts this, while he quiatly ignores Gaiga's statement about the Kall-Yuga Well might Nrisınha reject " the teachıng of Varâha as differıng from the Purânas"

The quotations which I have already given from Abu Rilian and Kalhana Pandit show that the fanciful vaganey of the astronomers regardıng the date of the Mahâbhêrata had already been partially adopted in the 11th and 12th Centunes $A D$ But the Jearned Mubammadan author goes on to show that the use of the Sapt-Rishi cycle had certainly extended to Multân and Sindh \dagger He says, that " writers differ with regard to the beganning of the yoar as well as with regard to the initial point of the cycle" He states also that he has "seen the Indians, when they wished to mark the date of the taking of Somnâth, write down 242, 606, and 99, and then add them togetber, which gives the year of Saka Abu Rshan explans that 242 shows the number of years (of Saka) which preceded the epoch when the Indaans first began to use the centenary cycle, and that this usage commenced with the ere of the Guptas Further, that the sum of 606 shows the number of complete centenary cycles of 101 years each, and lastly, that 99 is the number of years elapsed of the current cycle" These numbers added together give 947 as the year of Saka in which Somnâth was captured, equivalent to the year beginaing in April AD 1025, and endung in April 1026, which 19 correct, as Somnâth fell in January 1026

In confirmation of the accuracy of this process Abu Rihần quotes the following formula from the astronomical tables of Durlabha of Multân - "Set down 848 and add the Lok-Kâl or vulgar reckoning, the sum will show the year of the Saka era" Abu Rihân then gives

[^11][^12]the following example -"Set down the actual date (year 953 of Saka in which ine was writing) of Saka, and deduct 848, the remander 105 will be the Lok-Kal, and the year of the fall of Somnath will be 98 "

In the first example, the capture of Somnath $1 s$ assigned to the year 99 of the Lok-Kal, and in the second example, to the year 98 but the latter is no doubt a mistake for 99

As the Lok-Kal of this descuption differs from that which has been un use for many centuries throughont Kashmen and all the hill states of the Punjâb and Cis-Sutlej distıcts, it appens to me eit'ier that the Lok-Kâl of Sindh and Multân must have had a different staiting point from that of Kashmir, or that Abu Rihân must have been puzzled by conflieting accounts which he obtaned from vanous persons who, perhaps, had but little knowledge of the subject The latter, I conclude, to have been most probably the case, as Abu Rhân candidly achnowledges the imperfectncss of his account and warns the reader that the results which he gives are uncertain, as several of the numbers (of the ceutenary cycles) exteed 100

The Lok-Kâl, or "common era," called also the Sapt-Rıshr-Kal, or "era of the Seven Rishis," is a cycle of 2700 years divided into twentyseven centenary peiods, a new reckoning being started at the beginning of each century The theory of the cycle 1s, that the Seven Rishis, or stars of Ursa Major, remain for one centuly in each of the twenty-seven Nakshatras, or Iunar mansions All authoritics agree in making Aswint the first of the Nakshatras, and in stating that the Mahâbhâratr took place when the Rushts were in the Iunar constellation Maghâ, the tenth of the series The Puidnas, and the practice of all the people who still use this cycle, excepting only the Kashmiris, agree in making the era of Yudhishthra the same as the Kall-Yuga All, however, agree in stating that, at the time of the Mahâbhârata, the Seven Rushis had already passed 75 years in Maghâ But as Varâha piaces the Great War 653 years after the beginnug of the Kîl-Yuga, oi in 2449 BC , that year should have been the 76 th of the tenth Nakshatra, and the 976 th year of the cycle This would fix the first year of each centenary penod to the 25 th year of each century BC , and to the 76 th year of each century $A D$ But to prevent the confusion that would thus have arisen, Varaba simply ignoied the generally accepted belief that the Rishis had spent 75 years in Maghâ when the Mahâbharata took place and retained the initial pointa of the Saptershi centuries-only bringing Muglid down
from BC 3177 (or $3102+75$) to BC. 2477 Accordingly, Varâha's followers place the intial point of the Vrihaspati Chakia in 3377 BC in Aswinl, so that each century begins in the 26 th year of each century of the Kali-Yuga exactly as Dr Buhler was informed This also accords with the statement of my Keshmiri informant that the Rishis had completed three revolutions less 25 years in the Dwâpara-Yuga before the Kalı-Yuga began, that is, their Chakra preceded the Kâh-Yuga by 275 years, equivalent to BC 3377 , o1 $3102+275$ years

The following is a translation of the roply which I received from the Brahmans of Kangra in AD 1859 reganding the Sapt-Rishu-Kal At the beginning of the Kalı-Yuga, the Seven Rishis (or Stars of Ursa Major) had been 75 years in one Nakshatra (Magha), and they remanned in the same for 25 years longer These 25 years are the amount of difference between the total number of Kali-Yuga years elapsed and the number of centuries or years of the Hill cycle [Pahdir Samvat] up to the present date Thus the present year, 1859 of the Christian era, is Kali-Yuga 4960, and 35 of the 50 th Hill cycle, or exactly 25 years short of the number of Kall-Yuga years"

From another informant I received the following account -" The Seven Rishis reman for one hundred years in each Nakshatra They entered into Maghâ 75 years before the beginning of the K飣-Yuga, and they remaned in Maghe for 25 years of the Kâlı-Yuga," that is untsl 3077 B C., when they entered into another Nakshatra

Simular information was received from the Biahmans of Mandi and Bisahar. But from Kashmir the reply was somewhat different. It was obtained by Mirza Saifuddin after consultation with pandits and astronomers "The present year 1859 is 4960 of the Kali-Yuga, and Samvat 35 of the Haft Rikheshar The Kali-Yuga is sadd to be 25 years in advance of the Haft Rikheshar The seven atars complete one revolution in each Nakshatra in 100 years When they had completed thiee revolutions less 25 years in the Dwapara-Yuga, then the Kâli-Yuga began, and only 2425 years of the first Chakra belong to the Kalı-Yuga Each whole period of 2700 yeas is called a Chakpa, or cycle, in which the Seven Rishis pass through the 27 Nakshatras from Aswini to Revati. Of the mecond Chakra of 2700 years 25 Nakshatras were completed in the Christiau year 1825, or 4926 Kall-Yuga" This tallies exactly with the information lately obtaned in Kashmir by Dr. Buhler, who writes. "I have found in the manusar!pt several more dates in the Saptrishi
cra with the thousands added, and all agiee with the verse which plaees the beginning of the era in Kall 26, Chaitra-sudi $1 "$ In these accounts from Kashmil the eomputation of Varâha Mibira is adopted, which places the era of Yudhishthra in 653 of the Kâli-Yuga, when the Seven Rishis are said to have been in Maghâ, in ducet opposition to the eommonly recelved ieckoming which places the era of Yudlushthira at the beginning of the Kâli-Yuga

The infommants in Kangra, Mandi, and Bisahar agreed with the Kashmir coriespondent in fixing the begomming of the yeal at the noratra, on new moon of Chaitia, that is Cliartra-sudi 1

So muversal is the belief that the date of the Kall-Yuga is the same as that of the Mahaibhârata, that the native almanaes state it as a positive fact Thus Piofesso Bhândârkar quotes the following from an ordinary Eindu Panclianga of Bombay "In the Kain-age there ase six founders of eias Fist, there was Yurhishthira in Indiaprastlia, whose era lasted for 3044 years The second was Vi'srama at Ujayanı, whose cra had a iun of $13 j$ years The thild was Saluîhiana at Pıatısthâna" Here the era of Yudhishthira is made the same as that of the Kâl-Yuga which also dates fiom 3044 ycars before the ran of Vikiamn

The first mention of the Lok-KAl, or cycle of 100 years in the Raja Tarangini, is the year 89, corlesponding with AD 813-14 Before this period only the lengthe of 1 eigns are given, but from A.D 813 downwards the date of each king's death is earefully lecorded, with the name and day of the month as well as the year of the cycle

I have been thus particular in pointing out the true beginning of each century period of the Lok-Kâl or Snpt-Rishi Cliahra in the year 25 of each Christian centuiy, because both Tioyer and Wilson, after translating correctly Kalhan's statement that the ycar 24 of the Laukuka conncided with 1070 of the Saka (or AD 1148) have most delaberately and unaccountably thrown over the native haturian's statement and adopted some fanered dater of then own Thus the 8 nth year of the Kashmirian cyele, which, as we know from the Baijnath msemption as well as from Kalhana hımself, corresponded with A I) 813, Troyer refers to AD 816, and this error of thee years pervades all the dates throughout, the first six books of his translation So also Wilson's Chionology of Kashmar is throughout twenty-one years in advance of the true dates How all this happened I eannot even guess, but can only repeat the old saying "alnquando bonus dormitat Homevus"

The astronomers have been much puzzled to account for the alleged centennal motion of the Seven Rishis from one Nakshatra to another, which they admit is not visible to the human race Thus the commentator Sridhara Swâm explans, that "the two stars which pise first are Pulaha and Kratio, and whichever asterism is in a Lne south from the middle of those stars 18 that with which the Seven Rishis aie united, and they so reman for one hundred years" Other explenations are cited by Colebrooke, who closes his account with the opinion of Kamalakaia, who observes, that " no such motion of the stars is peiceptible Remarking, however, that the authority of the Puranas and Sanhutds, which affirm their revolution, is uncontroveitible, he reconcules fanth and expenence by saying, that the stais themselves are fixed, but the Seven Rishis are invisible deities, who perfoim the stated revolution in the period specified" *

The mythologists, however, give a different explanation According to them the Seven lishis, having given otfence to then teacher in the Satya-Yuga, were cursed by him and condemned to spend the remander of their lives as antelopes, wanderiug from one Nakshatra to another every hundred years Heuce they were named the Sapta-Minga, or "Seven Autelopes" This name recalls the Septem Trones of the Romans Some say that the Rishis were doomed to take the shapes of dufferent anmals every hundred years

But however obscure may be the ongin of the cycle, there is no doubt about its antıquity, as both Varâha Mihira and Bhattotpala refer to the description of it given by Vriddha, Garga, whose date is fixed by Dr Kern to the first centuny BC By his account the cycle must have been in use bofore the beginning of the Kâlh-Yuga, as he notes that the Seven Rishis had then passed 25 years in the Nakshatra or Lunar aster1sm of Maghâ Then as Maghà was the 10 th of these asterisms, the beginning of that Chakra or cycle of 2700 years must be dated back by 975 years to BC 4077 But the genealogtral lısts of the Puinas point to a still earlier period, as they place Krishna in the 52 ad generation after Biahma Allowing twenty-five ycars to a generation tho Hindu date of the creation would be thrown back by upwards of 1300 years before the Kall-Yuga, on to B C 4400

On referring to the nccounts of ancient India handed down to us by Alexander's companions, I find a curnous statement which seems to bear directly on this question of the starting point of Indian clironology

[^13]The statement is pieserved by Pliny, Solinus, and Arıan The first says, "Collıguntur à Libero Patre ad Alexandrum Magnum reges eorum CLIV, annis sex millia CCCCLI adjuciunt et menses tres,"-that 1s, "they reckon from Bucchus to Alexander the Great 154 kings, who reigned for 6451 years and 3 months" As Alexander entered the Panjâb in 326 BC, and left it towards the end of the same year, this account fixes the starting point of Indan chronology to the year $6451 \frac{1}{4}+326=6777$ BC.

Now it is a curious comedence that if another Saptarsh Chakra of 2700 years be added to 4077 BC , or the beginning of the Chakia indicated by Vriddha Gaiga, the initial yeal will tall in 6777, the very year which was satd by the Indians of Alexander's time to be the initial point of their history This comendence is certanly very remakable, and as it is the result of the addition of such a large period as 2700 years, it would seem to point to the conclusion that so early as the time of Alexander the Saptarshe Chakna of 2700 years was the common mode of Indian reckoning This indeed has already been mfered from the statement of Vriddlia Gaiga himself

The reckonang of the Lok-Kâl, as now used on Kashmar and the other hall states, is by the common lum-solar years beginning on Chaitrasudi 1, or the new moon of Chatre The cycle consists of 27 centuries, each counting from 1 to 100 years, when a new reckoning is begun. The first year of each century corresponds with the 25 th year of each Christian century Accoiding to Abu Rinân tbe people of Multân had only recently adopted the Kaslimiri reckoning from Chaitra, while in Sindh and Kanauj they still reckoned the yeal from Mankhir (that is from Margasiras or Agrahayana) *

For ascertaining any dates recorded in the Lnk-Kal the corresponding year of the Kâl-Yuga must be obtaned fiona the General Table, and the calculation must be made according to the rules laid down for the lumi-solar calendar In the Reja Tarangini the years are always mentioned by their numbers, and so they are in the Baljnath and Mandi inscriptions But the name of the century, which should be that of the Nakshatra, 18 never given

In Abu Rihan's account of the centenary cycle, there are several discordant numbers which I find it difficult to reconcile He states that when the Indians wished to note the date of the taking of Somneth[January 1026 A.D], they set down the figures 242,606 , and 99 , which added

[^14]together gave 947 of the Saka era [equivalent to AD 1025-26]. He explans tho numbers by referring 242 to tho number of years which had passed before the Iudıans began to use the centenary cycle, which came in with the era of the Guptas* In a previous passage, however, he makes this period only 241 years The figure 606 indicates the number of complete centuries (counting 101 years to each century), and the last figure 99 represents the number of years olapsed (éconlees) of the current cycle Now it seems to me that Abu Rihân has not properly understood the number 606, which I would explain as follows The unt 6 seems to me to refer to the penod which had elapsed between the establishment of the so-called Guptr era in AD 319, and the beginuing of the centenaly reckoning in AD 325 According to this explanation, the account will stand thus -

```
A D 78 79, establiahment of the Saka era
    241 pears
    315 estabhshment of the so-called Guptix erm
        6 \text { interval}
    325 begruning of the contenary cycle
    C00 years elapeed
    925
    99 years of carrent cycle elapsed
    1024-25 A D
```

But as the 99th year 19 sadd to have elapsed (éconlee), the carrent year of the cycle would have been 100 and not 93 Accoidingly, tho year A D would havo been 1025-26, which is correet, as the fall of Somnath took place in January 1026

The following table will be of use in showing at a glance the initial year of cach century, as well as its Nakshatia or Lunar asteristu according to the different reckonings of Viddha Oarga and the Purânas on one hand, and of Varâha aud the later astionomers on the other The numbers placed aganst the names of the asterisms show the number of each century, while the beginning of the Chakra, or complete cycle of 2,700 , is indicated by the No 1 placed against Aswin Thus, on the left hend, it will be seen that the cycle of the commonly seceived account began in the years 6777,4077 , and 1377 BC , and in 1325 AD , whle those of Varâhe Mihra's reckonnng began in 3377 and 677 BC By the former it will be seen that the Seven Rishis were 10 Maghe between 3177 and 3077 B C, that is in BC 3101 at the beginning of the Kâl-Yuga, while by the latter, they are placod iu Maghâ just 653 years later, between BC 2477 and 2377, that 1s, in B C 2448

[^15]| | Acoording to Vriddha Gargu and the Purdines | LOK-EAL,OrSAPTARSBI OYCLEInitial yesrs of Centaries | | | | Acoording to Varelha Mihira and the later Antronomers | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | $B \mathrm{C}$ | B C | B 0 | A D | | |
| 1 | Aewini | 6777 | 4077 | 1377 | 1325 | U Ashadha | 21 |
| 2 | Bharenı | 6677 | 3977 | 1277 | 1425 | Sravana | 22 |
| 3 | Kritticâ | 6877 | 3877 | 1177 | 1520 | Dhamiehtha | 23 |
| 4 | Rohmi | 6477 | 3777 | 1077 | 162: | Satabhiah6 | 24 |
| 5 | Mrigasiras | 6977 | 3677 | 977 | 1725 | P Bhadrpadî | 25 |
| 6 | Ardra | 6277 | 3577 | 877 | 1825 | U \longrightarrow | 26 |
| 7 | Panarvasu | 6177 | 3477 | 777 | 1925 | Revatil | 27 |
| 8 | Pushy ${ }^{\text {a }}$ | 6077 | 3377 | 677 | 2025 | Aswing | 1 |
| 9 | Aslorh ${ }_{\text {a }}$ | 5977 | 3277 | 577 | 2125 | Bharami | 2 |
| 10 | MAGHA | 8877 | 8177 | 477 | 2225 | Krittizà | 8 |
| 11 | P Phalguni | 5777 | 3077 | 377 | 2325 | Rohinı | 4 |
| 12 | U | 5677 | 2977 | 277 | 2425 | Mingasiras | 5 |
| 13 | Hesta | 5577 | 2877 | 177 | 2525 | Ardrá | 6 |
| 14 | Chitras | 6477 | 2777 | BC 77 | 2625 | Punarvan | 7 |
| 15 | Switi | 5377 | 2677 | A D. 25 | 2725 | Panhyâ | 8 |
| 16 | Visalkhis | 6277 | 2577 | 125 | 2825 | Anlesht | 9 |
| 17 | Anuradhe | 5177 | 2477 | 225 | 2925 | MAGHA | 10 |
| 18 | Jyeahtha | 8077 | 2377 | 325 | 3025 | P Phalgra | 11 |
| 19 | Mala | 4977 | 2277 | 425 | 3125 | U | 12 |
| 20 | P Ashidhe | 4877 | 2177 | 525 | 8225 | Hestis | 18 |
| 21 | U | 4777 | 2077 | 625 | 3325 | Chitra . | 14 |
| 22 | Gravana | 4677 | 1877 | 725 | 8425 | Swati | 15 |
| 23 | Dbanishthi | 4577 | 1877 | 825 | 3525 | Visalkha | 16 |
| 24 | Satabhieh | 4477 | 1777 | 825 | 8625 | Anuradha | 17 |
| 25 | P Bhadrpades | 4877 | 1677 | 1025 | 3725 | Jyeshthe | 18 |
| 86 | \mathbf{U}-.. | 4977 | 1577 | 1185 | 8825 | Mula | 18 |
| 97 | Rovald .. | 4177 | 1477 | 1885 | 8825 | P Ashadbe | 80 |

II.-BÂRHASPATYA-MÂNA,

OR

60-YEAR CYCLE OF JUPITER

Tee Bdrhaspatya-Mdna, or Cycle of Jupiter, is a period of sixty years, or five revolutions of the planet, each year of which has a different name This era was considered by Warren to be "very ancient,"* but Jaines Punsep, misled by Csoma de Koros aud Rentley, thought at was a "comparatively recent introduction" \dagger The former understood from the Tibetan authorities that the Vrihaspati Chakra was introduced into Indla about the year 965 A D, a date which talled very closely with Bentley's assumed epoch of Varâha Mihira in AD 966-67 Happily, Bentley's vagaries lave long ago been set to rest, while Colebrooke's date of Varâha Mhira, the author of the Sarya Siddhânta, has been satısfactorily astablished As Varâha died in AD 587, his writings describing the Cycles of Jupiter must be referred to the maddle of the Suxth Century a D But as he quotes Vriddha Gaiga as his authority, \ddagger the Jovian Cycle must have been in use before the Christzan era.

There are thiee different modes of reckoning the cycle of sixty years, of which the oldest is certannly that preserved by Varâha Mihna, as the first year of the Kâli-Yuga, by his account, is the twentyseventh year of the Jovian Cycle The second is the reckomang of the Jyotishtava, which is clearly only a correction of Vaîha Mhhra's method, as it makes the trist year of the cycle correspond with the first year of the Kalh-Yuga Both of these reckonungs have been in use in Northern Inda, where the necessary omission of eveny eightysuxth year of the Jovian Cycle has always been pieserved The thurd method is the reckoming followed in the south of India, by which the Jovian year is considered exactly the same as the solar year, and the

[^16]names are taken in succession, without any correction for the difference between the period of one ievolution of the sun and that of one-twelfth part of a revolution of Jupiter By thes mode of reckoning the actual Cycle of Jupiter is entuely lost sight of, and the sixty names become sumply the appellations of as many solar years

The Bârhaspatya-Mâna has been fortunate in finding two such capable expounders as Davis and Wairen, to whose works I may refer for a complete exprosition of the cycle It will be sufficient here to note the ules for finding the years of the cycle according to the two sightly different modes of the Noi thern reckoning

The Sûrya Siddhânta rule, as explained, is as follows -Divide the expired years of the Kâh-Yuga by 86 , add the quotient to the dividend, divide the sum by 60 , and the quotient gives the number of cycles expired Then, if the proposed year should fall less than 31 fiom the last expunged year of the Chakra, add 28 to the remainder, but if it should be moie than 31 , add only 27 , and the remainder so increased will indicate the current year of the Chakra. Take the year 223 A D $=$ 3324 Kâlı-Yuga, as an example
$-86) 3924(38+3324=3362$
$-60-20$ over
ndd 28
30 hh year of 57 th cycle
A 1 eference to the general table will show that this result is correct, reckoning from Prabhava

The rule followed in the second method is thus laid down in the Brihat Sanhita *
"Multiply the years expired since the era of the Saka King by 11 and the product by 4 , add 8589 , divide that suin by 3750 To the quoticnt add the Saka years, divide the sum by 60 (to" find the cycles)

Taking the same year as before A D 223-78=145 Saka-

\times	145	4
	11	$+145$
	1595	149
\times	4	- 60
		Cycles
	6380	or 3
	8589	
+3750J1	14969	

- Dr Kern'a Translation of the Brihat Sanhita, c wif, $\mathbf{2 0 - 9 1}$.

The Jyotishtava rule is practically the same as that of the Varthe Sanhita, the only real difference being in the amount of the Kehepa, or sum added -"Multiply the Saka year by 22, add 4291 to the product, and divide by 1875 Next add the quotient to the Saka year, and divide the sum by 60 The remander will be the last expired year reckoning from Prabhava."

Taking the same year as before A D 223-78-145 Saka,

In these last two methods the multiplying by 11 and then by 4 of the first is equivalent to multiplying by 44 , which $1 s$ exactly double the multipleer 22 of the second, just as the divisor 3750 of the first 18 double 1875 of the second In ather words, $\frac{11 \times 4}{3750}=\frac{22}{1875}$. There 19 a slaght difference in the Kikepa, or addition, as the half of 8589 is $4294 \frac{1}{2}$, or a little more than 4291 As James Prinsep has remarked, the factor $\frac{29}{1875}$ " 18 equivalent to dividing by 85227 , the period when a year is to be expunged by this system"

But the same result may be obtaned by a further simplafication of the process, as follows - To the Saka date add 195, then divide the sum by 85, and add the quotient to the Saka year Then divide by 60 the quotient will give the number of cycles expired, and the remander the number of expired years of the current cycle Thus taking the same year 145 Saka, the process is

145	
$+\quad 195$	+145 -149 340
	$60-149$

Cyoles $2+29$ years expired.
By the Telinga reckoming of Southern India the cycle began twelve years before the Kali-Yuga, the first year of which corresponds with

Pramatha, the thirteenth year of the cycle The rule for ascertaining the cycle fear for any particular date 18 simply to divide the expired years of the Kall-Yuga by 60, and the quotient will give the number of expired years

> Take the same year A.D $223+3161=3324$ Kalı-Yuga
> - 60 ———

> Cycles $55+24$ years

add 12 for the years before Pramatha, and the tesult is 36 years of the cycle expired, and the 37th year current as in the general table

As the years of the 60-year Cycle of Jupiter arc only occasionally mentioned in the inscriptions of Northern Indaa. I have not thought it worth while to give the Jyotishtava reckoning in addition to that of the Surya Siddhânta In fact, the difference between the two is never more than one year, and that only between the two periods of omitted years In the Second Century A D, the omatted year of the Súrya Siddhanta reckoning took place in 136, while that of the Jyotishtava was two years later-in 138 In A D 394, the omissions took place together In A D 479 the Jyotishtava omitted year preceded that of the Sûrya Siddbânta by one year, but in the present Century the Jyotishtava omitted year, No 48 in 1848, preceded the other, No 1 of 1856, by thirteen years The current years of the two cycles, however, geneally courespond, excepting in the short periods between the two omissions, when they differ by only one year The years 847 and 907 A D were initial years of cycles in all three modes of reckoning and the numbers of all the years coinclded from AD 825 (the 39th year) down to A D 909

The Telinga computation, though useless as an astronomical cycle is of great value in fixing the dates of inscriptions where the numerice figures are at all doubtful, or where the nane of the era may be uncertain Of the latter class there is a very curious example in an inscription translated by Dr Hall * The recosd is dated "in the Saka yeas twelve hundred and seventy-five, called Chutrabhanu, in the light fortmght of M drgaeursha, its fifth day, and Satuiday" Now nothing can apparently be clearer than this date, which corresponds with AD 135̄3, and yet it is absolutely certan that the word 'Saka' cannot be intended for the Salca era,t as the name of Chatrabhanu, which is the 16th year of the Jovian Cycle, corresponds exactly with 1275 of the

[^17]Vikramâditya era accordıng to the Northern reckonıng, while the Saka year 1275 is the 33rd year of the Jovian Cycle in the Noith, and the 27th year in the South, both many yeas distant fiom Chitrablânu But besides this evideuce there is also that of the week day, Satur day, which agrees with Mûıgasıras-Sudı 5 in the Vikramâditya era, and not in the Saka ein, when that date fell on a Monday Another reason for accepting the carlier date $1 s$ the fact that Malwa had already become a province of the Mulammadan cmpure of Delhi long befote Saka 1275, or A D 1353, whereas in Vikıama Samvat 127., or A 1 1218, Mâlwa was stıll under Hindu rule, as the invasion of Iltitmish did not take place untal A.D 1230

A good example of the Southein mode of reckoning is found in the date of the Kardla copper-plates, in 894 Saka in the year Anginas, on Wednesday, the full moon of Aswina, duning an echpse of the moon* The year Anguras is the 6th of the cycle curresponding with 894 Saka (or AD 972) of the Southern leckoming Accolding to the Northern reckoming the year was Sumukha, ol the 7 the But, strange to say, the full moon of Aswina was not a Wednesday according to Cowasjee Patell, \dagger who makes the lum-oclar yean of Saka 804 begin on Tuesday the 19th March 972 AD The full noon of Aswiua is the 192nd day of the ordinary year, which number divided by 7 gives 3 over, or Thursday the 26 th of September for the day of full moon Now we know that there wns an eclipse of the moon on Wednesday the 25th of September AD 972, wheh actually was the full moon of Aswina according to the Northern reckomug of the Sîrya Suddhânta I have calculated the date by both ieckouluge, and I find that, by the Southern reckoning, the 1st Vasâkh of the solar year fell on Friday the 22nd March, and the 1st Chartra-Sudi of the lunt-solar year 449 days earher, or on Monday the 18th March 972 A D, and not on the 19th as given by Cowasjee Patell According to the Noithern ieckoning the lat Varsakh of the solar year fell on Saturday the 23rd March, and the 1st Chaitra-Sudi of the lumssolar yeal 4808 , or five days earhet, -that 1s, on Monday the 18th March By both reckonings, therefore, the full moon of Aswina fell on a Wednesday But the cycle year of Jupiter agrees with the Southern reckoning

The cychic names, however, sometimes disagree one year with the reckoning of the other eras Thus there are no less than three inscriptions, all dated in the Saka year 730, whilst each has a different year of the Jovzan Cycle assigned to it These are Vyâya the 20th year, Sar-
vajut the 21st, and Saivadhâri the 22nd The second name agrees with the date according to the Northoin teckoning, and the last according to the Southern account But the fist, which occurs in the Nâsk inccuption, and should therefore belong to the Southern reckoning, is two years out, and is therefore most probably a mistake

Amongst eighty mscriptions which I have noted as containing year names of the Jovian Cycle, there ave only five which conform to the Northern reckoung The lateat is a short recond on a pillai in the cloisters of the Lâl Darwâza Masjid at Jaunpur,* in which the date 18 stated to be "the year Plava of Samvat 1353" Both dates coirespond with A.D 1206 By the Southein reckoning Plava comcides with Semvat 1358

In the anriexed table I have given the Sainskrit names of all the sixty years, with their numbers counting fion Prabhava The nuabers only ale given in the geneial table for want of space In the unscriptions the names only alc grven, so that whencer the name of a Jovan yeai is found an an inscription, it will be necessary, in the first place, to refer to this table for its number

I have also given tianslations of the Tiveian names which weie derived from the Chinese, for all the suxty yeass They are formed by a combination of the names of the twelve animals of the smaller cycle of twelve ycass with the five elements The first cycle dates fiom A D 1027, and not from 1020, as stated by Csoma dr Koios, and adopted by Prinsep \dagger At page 181 of his Grammar, Csoma competly states that "the prescnt ycar 1834 leng the 28 tli year of the 14 th acle," which gives A D 1807 as the first year, and therefore 11 tahing 1026 as the first year of the first cycle, he is one vean in crion

Prinsep quotes Csoma's account of a menorl of 403 years, termed $M e-k h a-g y a-t s h o$, as preceding the introduction of the Kata-Chakra, or 60-year Cycle of Jupiter in Tibet, and he arlopts \} 4 opimion that it has reference to the Hijra cra "It,' says C'somd ' we add these 403 years to 622 , the first ycai of the Hijia, we have exactly the year 1025, whence with 1026 commences the first ycle of 60 years of the T_{1} betans" But the correct date was 1027, and the number 403 most prubably had reference to the years passed from the Kashmmi Lok-kal of AD 625

[^18]down to A D 1027, when the Cycle of Jupiter was introduced The name was only a symbohcal mode of reckoning the number 403 as mé, "fire" $=3$, lha, "vacuity" $=0$, gya-tsho, " ocean" $=4$, or put together 403 It had therefore nothing to do with "the entrance of the unfidels into Makhe"

Csoma, in his Chronology, states, that the Badurya Karpo was "written in the first year of the twelfth cycle, or AD 1687" This is correct, as the unit of each initial year of a cycle should be a 7 So also the period elapsed from the introduction of the Kala-Chakra down to 1687 is said to be 660 years, which gives AD 1027 as the first year of the first cycle

It 18 perhaps only accidental that the year 1027 is also the begnnning of the 60-year cycle in Southern India But the comeidence is curious. In Chuna the cycle began in 1024 AD, a fact which is proved by the numbers attached to the Tibetan names in the accompanying table, which shows that three years of the Chinese or Tibetan cycle names had already passed when the Indian cycle, commencing with Prabhava, began.

In my work on Ladakh I have made the same mistake of one year as was done by Csoma himself I stated correctly (p 396) that the year AD 1851 was the 45 th year of the 14 th cycle, for, deducting 44 from 45 and from 1851, we get the first year $=1807$ But in the list of initial years I have given AD 1026 down to 1806, instead of AD 627 to 1807, owing to my fasth in Csoma's accuracy.

BÃ Ithaspatyanchakra
Names of the 60 years of the Jovian Cycle.

吹	SANSKRIT	TIBETAN	退
1	Prabhava	Fire-hare	4
2	Vibhaya	Eerth-dragon	6
3	Sukla	Earth-gerpent	6
4	Pramoda	Iron-horse	7
5	Prajapata	Iron-sheep	8
6	Angiras	Water ape	9
7	Sri Mukhn	W ater-bird	10
8	Bhava	Wood-dog	11
9	Ynvan	Wood-hog	12
10	Dhater	Fire-mousa	13
11	Isware	Fure-ox	14
12	Eahudhanya	Farth-tiger	15
13	Pramitbin	Earth hare	16
14	Fikrama	Iron dragon	17
15	Vrisha	Iron serpent	18
16	Chitrabhenu	Water horse	19
17	Subhénu	Watar sheej	20
18	TGrana	Wood ape	21
19	Parthiva	Wood bird	22
20	Vyayn	Fire-dog	23
21	Sarvajit	Firo hog	24
22	Sarvadhârin	Earth-mouse	25
23	Virodhin	Earth ox	26
24	Vicrita	Iron-tiger	27
25	Khara	Iron ape	28
26	Nandana	Water dragon	29
27	Fijaja	Water merpent	30
28	Jaya	Wood-hbrse	31
29	Masmmethe	Wood-aheep	32
30	Durmakha	Fure-ape	33

18	SANSKRTT	TIBETAN	\%
31	Hemalamba	Fire-bird	34
32	Vilamhia	Earth-dog	35
33	Vikarin	Earth hog	36
34	Sarvarı	Iron-monse	37
35	Plava	Iron-ax	88
36	Sobhakrit	Water-tager	39
37	Subhakrat	Water-hare	40
98	Krodhin	Wood-dragon	41
38.	Viswavasal	Wood serpent	42
10	Parabhava	Fire horse	43
41	Plavanga	Fire-mbeep	44
42	Kilaka	Earth.-npe	45
+	Sanmya	Earth-bird	46
44	Sôdhurana	Iron-dog	47
, 5	Radhakit	Iron-hog	48
46	Paridhavan	Water mouse	49
47	Pramâdin	Water-ox	50
48	Ananda	Wood tiger	51
49	Irakname	Wood-hare	52
50	Adala	Fire-dragon	68
51	Pingala	Fire-serpent	54
62	Kalayuticn	Earth-boum	65
63	Sıddhtrtha	Earth-gheop	$\stackrel{4}{6}$
54	Randra	Iron-ape	57
55	Durmata	Iron-bird	58
66	Dundnbhl	Water-dog	59
57	Udgairia	Water ${ }^{\text {bog }}$	60
58	Kaktikshe	Wood-mouse	1
69	Kradha	Wood-ox	2
60	Kshays	Fire-tiger	8

III.-BÂRHASPATYA-MÀNA,

OR

12-YEAR CYCLE OF JUPITER.

\rightarrow GONT
The smaller Cycle of Jupiter consists of a period of twelve years, or one-fifth of the greater Cycle It was described by Davis at some length, but 1 only briefly noticed by War ren * I have already given a detailed account of this Cycle in my attempt to fix the anitial point of the Gupta era \dagger Varâha Mihira notices it in the following terms "Each year (duning which Jupiter completes a twelfth part of bis revolution) has to bear the name of the lunar mansion in which he rises The years follow each other in the same order as the Junar months" They are also named after the lunar months with the prefix of the word ' Mahâ' Thus Lalla says

Magha-oho Maghayam yukta Maghdyam-oha Gwrwrgada Maha Magha
" When both the Moon and Jupiter are in the asterism Maghe, on the day of full moon of the month Magha, then the year 15 called Mahd-Magha"

The statement of Varaha, quoted above, that the year has to bear the name of the manszon in which Jupiter rises requires some explanation The twenty-seven Nakshatra, or lunar mansions, are divided into twelve groups, nine of which compise two mansions only, and the remamung three each three manswons One Nakshatra in each of these twelve groups gives its name to the lum-solar months, and consequently to the years of this cycle

Accordang to the rule for naming the sevelal years of the 12 -year Cycle of Jupiter, the year 18 called after the Nakshatra in which the plauet rises helacally. But in practice the names of the Jovian years

[^19]are made to coincide with those of the luni-solar months So that should the planet rise in Bharaul the year is not called Blârani, but Aswin, which is the name-giving Nakshatra of the group to which Bhaianı belongs

Bhattotpala quotes Garga to the effect that 170 solar years being equal to 175 Jovian yeary, the two names of Aswayuja and Chaitra must be omitted.

This proportion wes aftel wards altered by Varâha, who made 172 years of Jupiter equal to $170_{1 i}^{\circ}$ solat years, on which account two of Brihaspati's years aie to be omitted in that period His words are

[^20]Practically, every eighty-sixth name is expunged, and consequently the omissions aie confined to six names out of the twelve, or, iu other words, the omissions fall only on the alternate names in regular succession Thus the six omitted names are Srâvana, Aswayuja, Mârgasiras, Mâgha, Chaitra, and Jyeshtha The rule for finding the year of the 12-year cycle is only a slight exteusion of that for the 60 -year cycle

Rule -Find the equivalent year of the Saka era, and multiply it by 22 , then add 4291 to the product, and divide by 1875 Add the quotient without fiactions to the Saka, date, and divide the sum by 60 This quotient gives the nuinber of expired cycles, and the remainder the number of expired years of the cuirent cycle counting from Prabhava. To find the year of the 12 -year cycle divide the last remainder by 12 , the quotient will give the number of Jupiter's own revolutions completed, and the remainder will be the numter of years expired of the current 12-yeai cycle, counting from Mahê-Srâvana as the first The following example will show the working of the rules Take A. D. $166=88$ Saka

I	
$88 \times 22=1936$	
+4291	
-1875 J 6227 (3	
88	
-	
91	
+60-	
Cycle $1+31$ years.	

But the same result may be obtaned by the shorter process which I have proposed in my account of the 60 -year cycle. Thus, to the Saka date add 195 , then divide the sum by 85 , and add the quotrent to the Saka Then divide by 60 , the quotient will give the number of cycles expired, and the remaiuder the number of expired years of the current oycle The above example will therefore be as follows -

$$
\begin{aligned}
& \text { Baka } 88 \\
& +195 \\
& -\sim \\
& -85) 283(3+88=91 \\
& -60- \\
&
\end{aligned}
$$

Very few inscriptions have hitherto been discoveied dated in the 12-year Cycle of Jupiter But four of these, which are found coupled with the coucurient dates of the Gupta era, are of unusual importance fiom the aid which they may give in fixing the initial point of the Gupta ela, which will be discussed hereafter These four dates are found on the copperplate unscuptions of Raja Hastin and his oon Sankshoba. They are as follows -

Another inscription of the same family on a stone pillar gives the name of Mahâ Magha, but without any concurrent date

Mr Fleet has published* two ancient insciptions of the Kadamba Râjas of Banawâsi in the Dakhin, which are appaiently dated in thas 12-year cycle of Jupiter Both inscriptious are of Raja Mrigesa, the earher one being dated in the year Pausha, which is said to be the third year of his reiga, and the later one in the year Vaisakha, which is said to be the eighth year of his reign From these two statements we learis that the third year of his reagn must have begun in Mahâ Mârgasiras, as shown by the succession of the names of the years as follows -

- Archeulogicial Suivey of India, Vol X, 126-2T

Here unfortunately there is nothing to fix the date beyond the fact that between the years named Malıâ Pausha and Mahâ Vaisakha there was no name omitted But I think that something may perhaps be gained from the inscimptions to assist in finding an approximate date

Sir Arthur Pliayre has published a Burmese inscription fiom Pugân, which appears to me to be dated in the 12-y ear Cycle of Jupiter, as well as in the common eia in use in Burma It opens with the date thus "In the era 551, the Tharcwan yesi" Tharawan is the Burmese pronunciation of Sravana But the year 551, ol AD 1189, was Mah\& Jyeshtha If we might read 553, or AD 1191, then the yenr would correspond with the Indian year of Mahâ Siâana

I have quoted these examples from Banawâsi in the Daklun, and Pugan in Burma, to show how widely spread was the use of the Cycles of Jupiter in anclent times

The people of Tibet and Ladak also make use of a cycle of tivelve years for the computation of shoit periods, such as a peison's age, or the date of any recent event In thes cycle each year is named after a different anımal, as follows -

The only difficulty that I see about accepting the 12-year Jovian Cycle of Varaha for the five centuries which preceded him is the statement of Garga about the omission of Chaitra and Aswayuja as if in his time they werc the only yoars subject to retrenchment But as Garga mentions that 172 of Jupiter's years were equal to 170 solar yeais, white Varaha makes them equal to 170_{1}^{6} solar years, the two cycles are practically the same in other respects It does not, however, follow that no other years were subject to omission beause Chaitra and Aswayuja alone are mentioned My impression 1s, that the same'six months that are omitted by Varaha's rale were alsn subject to oraission in Garga's time But even adinitting that Chaitia and Aswayuja were the only two years that were expunged fiom the time of Garga down to Vai aha Mihira, I see no difficulty in adjusting the times of omission so as to make them the only expunged years As Chaitia and Aswayuja aie also ountted years
in Varaha's scheme, they will of course remain constant, as the average period of omission is in both cases the 86 th year If then we accept the year 310 A D in which Chaitra was omitted as common to both systems, we have only to take the Aswayujas and Chaitras which fall necurcst to the 85 -year peniods, ether those preceding (A) or those followmg them (B), and the result will be the same excepting only as regards the names of the other omitted yeass This will be seen at once by the following ariangement of the names -

Vaidha Muluna.			Pioposed Arrangements					
A D	Interval		A \mathbf{D}	Interal	A	A D	Interval	B
310		Chaitra	510		Chatera	310		Chaitra
896	86	Syeshta	387	77	A	399	89	
8	85	Jyeshts		89	A		89	Aswryaja
480		Srâvana	476		Chatra	488		Chautra
565	85	Aswayuja	565	89	Aswayuja	565	77	Abwayuja
-	86	,	568	77	Aswayaja	565	89	Anwayay
660	85	Agrahagana	642	89	Chaitra	654	89	Chaitra
735		MHgha	731		Asway ${ }^{\text {aja }}$	743		Abwayuja
820	85	Chaitra	820	89	Chaitra	820	77	Chastra
- 6	510	yeare		510	years		510	years
Mean	85	interval	Mean	85	anterval	Mean	85	interval

From this'table it wall be seen that a regular succession of Chaitras and Aswayujas might be omitted while stili retannigg a unform mean period of elghty-five years It wall also be seen that at every third period the names of the omitted years, as well as the dates of omission, agree with those of Vaı̂̂ha Mihna

IV - KÂLl-YUGA

The Kâh-Yuga, or fourth age of Hindu Chronology, dates rrom the year 3102 BC , the year 1, expued or completed, beng B C 3101 The Four Yugaa, ol agea, which compuso one Mahê-Yuga, consist of the following pellods -

Regarding the ongin of the Mahd-Yuga I have already expressed my opinion that it was the invention of the antionomers fourled un the precession of the equinoxes It may be ohyected that the division into four Yugas and their duration are mentioned both in the lide of Manu* and in the Maliabliârata But what is the age of Manu's Cocle ; The references to female beratics who wear an inlawfil dres, or a dress unauthorized by the Vedas [$\mathrm{v}, 89,00$], of "finale anchocts, or nuns [vili, 30, 37], and of "heretical books," or books of a false seligion [11,11, and xı, 60], pomt so clearly to Buddhesm that the Code in its present furm must cestandy be postenor to the spread of Buddhism under Asoka.

The era, of the Kall-Fuga was in use down to the time of Valahic Mihira, who first introduced the use of the Saka era into A tronomical woiks Aryabhata, who was not mose than fifty years pitis to hm, still computed by the era of the Kali-Yuga \dagger The intiel point of the ela seems to have been a tiaditional date of the period of the great 1 m , which had been handed down parhaps for ages This date of 3102 lBC
as the year 0 of the Kall-Yuga was accopited by all, and from it the calculations of Aı yabhata, and Varaha Mihira for the solar and luni-solar periods were computed

Where the Kali-Yuga eia is used alone, the day of the month may be expressed either according to the solar calcndar, or to the lumsolar one Frequently the year $1 s$ given in two different eras, one of which may be usually connected with the solar calendar and the other with the lunar In the North of India the Kall-Yuga and the Saka years are generally, but not always, connected with the solar reckoning, while in the South of India the Saka era is usually accompanied with the lunn-solar ieckoning The Sainvat of Vikiamâditya is the only era that is exclusively luni-solai

V-CYGLE OF PARASURÂMA

The era of Parasurâma is a cycle of 1000 years, which is said to have begun in BC 1175㿿 complete, or 1176 BC curient It has beon described by Warren in his Kâla Sankâlita,* where he staté that ats use is confined to the Southern pait of the Peminsula, called Nalayâlam, comprising Malabâl and Thavancore down to Cape Comorin "The commencement of the year 977 of the 3rd cycle 1-satd to have concided with the 1st of (the solar month) Aswina of 1723 Saka, and the 14th September A D 1800" Hero the Chistian ycar as wrong, as it should be 1801, to agree with Saka 1723 Acconding to Cowayee Patell, the imital day of the year 977 was the 15 th September 1801 The year is a solar one This cycle is also called the Quilon or Kollam eis Di Burgess calls it the Kollarn Andu eia, and says that the la-t expired cycle began on the 25 th August, AD $825 \dagger$ Cowacyee "atcll gives the 29th August of the same year The minal dates of the different cycle ale therefore

I Cycle	B C	1176	
II	$"$	$\ddot{ }$	176
III	$"$	A D	825
IV	$"$	$"$	1825

It is never used in Upper Inda, and imdeed is scarcely known, except by name, even to the astronomers

[^21]
VI.-NIRVÂNA OF BUDDHA.

The Nirvdna, or death of the last Buddha Sâkya Muni, has been in use from a very early date down to the present day According to the Buddhist Chroncles of Ceylon and Burma, the Nirvâna took place in 544 BC But as the inauguation of Asoka 18 referred to the year 218 after the Nurvina, it seems puabable that there must be an error in the date of the Nurvana itself to cle extent of sixty-six years, as the chronology of the reign of Asoke is now pietty well asceitaned His father's death tonk place in the year 214 of the Nurvins, or BC 264, and his inauguration as king four years later, after he had prevaled over his biothers.

Only two inseriptions have yet been found which are dated in this era. The first 18 contained in the rock edicts of Asoka at Rupnath and Sahsaram The second occurs in an inscinbed slab which I found in the Temple of Surya in the city of Gaya The date of Asoka's inscirption is the year 256 , or the 42 nd year after the death of his father, his own reign being stated in the chroncleq at 4 years +37 years, or altogether 41 years complete, and 42 current The second date 191813 of the Bhagavat Parmmertte Samvat, ol Nirvina, or Thursday the 1st of Kârtıka-badı

In Northern India the true date of the Nirvana was lostata very early period Thus, in the time of Hwen Thsang, A D 630-645, the Buddhist schnols held widely different opmons, varying from 900 and 1000 years up to 1200,1300 and even 1500 years prior to that date," which would place the Nirvâna of Buddha either m 250, or 350 or 550 or 650 and 850 BC The same extravagant antiquity was also asserted in the time of FaHian, who places the Nirvana during the reign of Ping-Wang, Emperor of China in BC $770-719 \dagger$ A simular antiquity was still clamed as late as the Twelfth Century A D, during the reign of Anoka

[^22]Balla Deva Two of his menptions are dated in the years 51 and 74 of the Lakshmana Sena era, or 14 A D 1157 and 1180 A third anscıption, which is dated in the year 1813 of the Pamnurvitte of Bhagauatc, shows that the time the Nirvina was believed to have occuried, was about 656 to 633 B C.

But these extravagant periody aie disproved by Brahmanical as well as by Buddhist recoids, after making the necessaly correction for the dates of Chandia Gupta and Asoka

The following is the account given in the Brahinaucal Purinas -

Now the period stated in all the Buddhist records as 214 years, the difference of nearly 100 years, being in the reggus between Ajeita Satru and Clandia Gupta In favour of the Budihnat reconds I may remark that Buddhaghosha," the Brahman youlh, born in the neighbourhood of the terrace of the Great Bo-tree, . who hat achieved the knowledge of the thiee Voulas," must have been coginzant of the northern chronology when he translated the Singhalese Atthru-Latha, in which he has adopted the same dates as are found in the Mahawansa and Dipawansa Admitting the correctness of this suggestion, it follows that Buddhaghosha either gave a preference to the Singhalese chronology, or that it did not differ from the not thern chionology in his time, that is in AD 400. But whatever may be the true explanation of the difference, the fact remains that the Buddhists are unanunues in placing the Nirvina of Buddha 214 years privi to the accession of Asoka Acerpting this as the unost probable account of the interval, we obtain foi tine Nirvâna the corrected date of $264+214=478 \mathrm{BC}$, instead of 544 BC , being a difference of 66 years

A novel theory has lately been put forward to account for the disciepancy by 1 fering the Nirvâna to the time of Buddha's attainment of Buddhahood under the sacred tree As this took place when he was $29+6=35$ years old, the difference is only $80-35=45$ years, anstead of 60 years Mr Curter, who proposes this explanation, appears to thınk that Sâkya obtaned Buddhahood at 20 years of age But he only left has home at that age, and had to sit for six yeary under the Bodhi tree at Uruvilwa before he attamed Buddhahood * The Buddhavansa (which he quotes) states vaguely that Gotama did not live to 100 years

Mr Cuıter's figures ale-	
Gotama's bırth	572 BC
Nuvâha at 29th year =	543 M
Death accordang to the Inscrıptions	483 ",

I must say that I remain quite unconvinced The period that requises coniection is not that between Buddha and Asoka, but the still later peiod of the impossible regrs of Mutasiwo and his sons for 162 year, or exactly bl yeas to one generation If the Butluhist dates of Chandia Gupta and Anoka can be consected to the extent of 60 years, the date of Buddhas Ninvina must le sulject to the same correction, as the period between them does not seen to be capable of extension On the contialy, the Noithein Buddrats seem to have usually cuitailod it to 100 years as stated by Hwen Thsang, as well as in the Asoka Avadâua \dagger A single nothen work, the Avadana Sataka, extends the period between the Nirvâna and Asoka to 200 years

For these reasons I retann the year 544 BC as the aecepted date of Buddha's Nirvana, according to the Buddhist chonology of Ceylon and Burma At the same time I think that there must certanly be an error in this date to the extent of about 66 years as shown by the subsequent dates of Chandra Gupta and Asoka.

[^23]
VII-NIRYÂNA of mahâvira.

The Jans make use of an era dating fiom the Nıv vâna, i death of their last teacher Mahîvia Aceordug to the Swetàmbara seet this event took place 470 years before Vihatana, or un B C ;27 The Digambaras, howevel, mahe it 605 year, before Vakama A_{4} the difference between the tiva dates is exactly 185 yuars, it seems probable that the Digamharic date of 605 years betone. Vikama should be alteted to 605 years befure Sâka, which would agree with that of the othel seet I have made many enquines on thas subject tom leanded Jaing in Noithern India, and the answe lias been unfonmly the same, ' 470 years kefore Vikiamulitya" Thas also is the date given by the Jains of Gujaite The same date sured thoughout the Theiavali of Mustunga, whu sat) "Before thr commencement of the zeign of Vikrama, Su Veran Nuvinna took place 470 ytas" \dagger Chlonel Mule alva, in his account of the Jauas of Gujautat and Nầwàn uses the samo date \ddagger Colonel Tod makes the era 47 ? yenis before Vikrama

[^24]
VIII-ERA OF THE SELEUKIDE.

-achaters
The initial point of the Seleukrdan era has been fixed by Fynes Olinton to the lst of October 312 BC , in the beginning of Olympad XVII, 1* According to Ulugh Beg this era began 12 years after the death of Alexandel, and 340,700 days before the Hyjra of Muhaminall, 16 th July AD 622 Now 311 complete years BC plus 621 complete years $A D=932$ Julan years, contain 340,414 days, which delucted from 340,700 leave 286 days to be accounted for As the Hyra era dates from 16th July there are 106 days in A D 622, which leave only 90 days pitor to the begnning of BC 311, so that, according to Ulugh Beg, the Seleukidan ela must have begun on the 31d of October BC 312 The other datum of 12 years after the death of Alexander ches not 1 efor to the actual date of Alexauder's death, but to the imitial lay of the 425th year of Nabonasar, 12th November 324 B C, in which year Alexander died Twelve years later places the beginuing of the Seleukidan ela near the end of the year 312 BC

This era dates from the defeat of Nikanor, the general of Antigonus, by Seleukus, who thus became master of Babylon in Olympiad XVII, I The intial date of the era in BC 312 is also estabhahed by the dates on several coins, of which one of Hadrian bears the daie HKY, and another of Caracalla bears the date of HKФ As Hadıaan began to reign on the 11th August 117 AD, and Caracalle on the 8th April 217 AD, the first year of the era referred to must have sucluded the dates of 8th April and 11th of August 311 BC \dagger

The names of the months were the same as those of the Macedonaan Calendar But as the Seleukidan year began in October, the first month must have been Hyperberetaus The order of the Macedoman months has been gathered by Clinton from Josephus and Suidas

[^25]who compare them with the Hebrew and Roman months* Clinton givos en extract from Cardinal Norisius, who quotes Hieronymus to show that in Antioch and other Syian cities the year began with Hyperberetæus -
"In quarto mense qui apud nos vocatur Januarius, apud Oisantales enm populos, October erat pumis menqis, et Jnnuaring quartus Est (Shebat) in acerrimo hyemis, quu ab Kgyptús Mechir, à Macedonibus Mepitos, à Romams Februarius appellatur" So also Corsmi and Scaliger make Hyperberetæus the first month The following aie the names of the months with the corresponing months of the Jewish Calendar as found in Josephus and other authors-

Macedonian		IIEBREN	ENGíNBH
1	Hyperbereteus	Timet	October
2	Dius ..	Marcheawno	November
3	A pellmus	Kialeu	December
4	Audynæus	Tebetls	Jamuary
5	Peritiun	Shebnt	Febiuaty
6	Dystrus	Adar	Mnach
7	Xanthikus	N198n	Apral
8	Artemisus	Ijar	Mny
9	Jmatus	Swan	June
10	Panemus	${ }^{1}$ I n muz	Joly
11	Lous	Ab	August
12	Gorpreus	Elal	September

Now the Macedoman Calendar, like that of the Athenians, was a luni-solar cycle of 19 solar years, or 235 lunar months, and as more than a century had elapsed from the time of Meton when Seleukus established his era, there can be no reasonable doubt that the Metonic cycle was adopted in Syria This is proved by the following facts \dagger

1 "Whenever Macedoman months are compared with Attic or lunar months, it nowhere appears that they differ in their dimensions or contents

2 "Seleukus Nikator, the founder of the kingdom of the Seleukidm, gave order to affix the Macedomian names to the Syian months, which were unquestionably lunar

[^26]3 "Ptolemy, in his Almagest, gives the dates of various eclıpses and occultations obseived at Babylon between the years B C 721 and 229 The last three dates, BC 245, 237, 229, bear tho names of Macedonian months, and by calculation prove that the Babylonians under the Seleukidx measured time by lunar months with Macedoman names

4 "The date on the Rosetta stone, IX Ptolemy Epiphanes, 18th Mechir_= 4th of Macedonian Xanthikus, being reduced, proves the same thing "

These facts show most decisively that the Syro-Macedonian calcndar of the Scleukidæ was luni-solar, and not solar, as is fiequently stated * Thus James Prinsep, copying an aiticle fiom the Coinpanion to the Nimanac for 1830, says -"Then year was solar, and consisted of 365 days, with the addition of a day every fourth year." But the calendar of $365 \frac{1}{4}$ days is the Julian calendar, which was not adopted in Syma until some time after the Chistian era, when it had become a Roman province

As the Syio-Macedonian montlis were lunar, there must have bcen seven intercalary months inscrted at certain periods in each cycle of 19 years Accolding to the Greek cycle of Mcton, these insertions took place in the 31d, 5 th, 8 th, 11 th, 13th, 16 th , 19 th years of the cycle "The name of the old Macedouran intercalary month is mferred from 2 Maccabees, XI, 21, wheie the date of a manifesto issued by Lysies, General of Antiochus Eupatol, is given as 24th Divonopiverov, but in the Vulgate 24 Dioscona, and from the Etymol ${ }^{m}$ Magm we learn, that diónopos was the name of a month A missive of Antiochus, evidently witten not much later, is dated 15th. Xanthikos Hence it is inferied that the place of this inteicalary month Δ córnopos was the saine as that of the Jewish month, qe, before Nisan " \dagger

The introduction of the Julian reckoning must have been confined to Syria and the western piovinces of the Seleukidan empire, which had been annexed to Rome But in the Eastein provinces, which then foimed the Paithan empire, the lum-solai reckoning still maintaned its place This is proved most conclusively by the following facts It was the custom of the later Parthan kings to date all their large silver coins with the month and ycar of then issue The names of all the twelve Macedonian months have thus been found on the cons of the Parthan

[^27]kings There are a few slight differences, such as Xundikus for Xanthukus, and Solouns for Louy But on one com of Vologeses III, I find the name of emboai, which can only be that of the intercalary or embolusmuc month* This is acconipuncd with the date or of 460, or A D 178-9, in which year there was an intercalary month accouning to my table It is clear, therefore, that, up to this late period, the people of the Parthian empire still continued to use the luni-solai reckoning of the Macedoman Calendar

I have been thus paticular an deacribmg the Syro-Macedonian Calendar of the Neleukida ay we know that it was in use in the northwest of India, duimg the period of Indo-Scythian anle, from which we may infer, with some cutainty, that it must have been the common reckoning of then prentecessors, the Bactiran (dief's Mr Thumas has already shown that this is highly probabio, but nothing has yet been fourd to determine it absolutely

Is the Iudo-Scytman inseriptions, the names of four different Macedonian months hive been lonnd,-namelv, Panemos, Daisios, Apellasos, and Aitermsioy I 'wnecurience at theye names showa meontestably
 Noith-Western Indir ly the Jantuan Girwh, and as the province to the west of the lahar hav lofonged to Selaban I comulude that the era of the 'selcukude munt has been adopte 1 thent alho Unfortunately, the year dates hithetio lixcosered ase all senall inmbers, which maght refer to some lecaritly "atabliblied wa of he Judu-Scythans, or, as suggested hy Mr Thomes, they may possilh iffis his the Selcukidne era by learner sut the homethe, whein was the common lindian mode of reckonugg the yea of the Suthenth-hâl With the Indo-Scythan
 and of $33,39,47$, anid if of Huvishita marat tithon bereferied to a
 of the fifth selukilan e utury, by leavmer nut \mathbf{y} (ho in the former case. the year 9 of Kenubika would be $78+9=87$ A D, while w the latter case it would be ielericd to whe year 409 of the S-liuhidin eia, equel to A. D 97-98

It is doubtful, except in a few mstancers, whether any cons of the Greck kings are dated The thee letters Pul on the exergue of the con of Platon can only bexplamed as a date. althoneth the sual order of IMP is icversed Ay a dite they represtrit 1 却 whel, can only be

[^28]referred to the Seleukidan era, and would, therefore, be equivalent to B C 165-164 The letters Or, or 73, are found on a com of Eukratider, and the lettels M1, or 83, on several coms of Hehokles That these are mont prolably dates has been proved by Mr Thomas, by a reference to a conn of Hehuhles in the Butish Museum, beanng the full date PTIf, or 183* I have smee acquicd a tetiadiachm of Eukiatides with the detached letters N., wheh may also be read as a date, or $51=151$ of the Scleukidar ala According to these dates we have-

After this the dates on the Gheek coms would seem to be, as Mr Thomas suggests, only regnal years of the different kings

Havinc arcepted these dates-and I do not see how they can be digjuted-I feel that the dates found in the Indo-Seythan imseriptions along with the names of the Macedons.n months must also be refersed to the Soluakidan cia I am quite prepared, therefore, to acecpt all the dates of the Indo-Seythan msciptious fiom Kabul and Tasila and Nathura as helonging to the Selenkidan ena, with the hundieds omited after the Imdian custom 'Ihns also would appear to be Mi Thomas's conclusion, when he sats "The questron thus anses whether this later pactice (ut using the Macedoman names of the monthy) does not unply a continued use of the Seleukulan eia, in association with which tho names must first have rcached India'

Under this new, the follewing will be the dates of the Indo-Scythan Prnuces Kanıshha, Huvishka, and Vâcu Deva

$$
\begin{aligned}
& \text { AD } 80 \text { K }{ }^{r} \text { neshha, S } 9=409-312 \Rightarrow 97 \text { AD } \\
& \text { S } 28=428-312=116- \\
& \text { AD } 120 \text { duticskha, S } 33=433-312=1.11 \text { AD } \\
& \text { S } 51=451-312=139- \\
& \text { A D } 150 \text { Уâsu Duva, S } 87=487-312-175 \text { A D } \\
& \text { S } 98=498-312-186 \mathrm{AD} \\
& \text { A D 190, close of Indo-Scythana rule in Noathern Indaa }
\end{aligned}
$$

The accuracy of these dates is confirmed by the discovery of gold cons of Wema Kadphiser Kaninka and Huvichka nin the Ahn posh Stupa, along with some Roman gold coms of Donitian, Tiajan, and

[^29] Vol. IX, ${ }^{3}$

Sabina, the wife of Hadrian Sabina died in A.D 137, and as there was ouly one com of Huvishka amongst twenty-one specinens, the Stupa was probably built not later than 130 AD

Undel these circumstances it appears to me that some account of the era of the Seleukidæ 19 absolutity necessaly for anv woik treating of eaily Indian dates I lave therefore diawn up the accompanying tables of the initial days of all the years of the ela fiom its commencement down to the close of the Partman empite in the carly part of the Third Century A D I have studied the accounts given by Cluton in his Fasti Hellenict, and by Browne in his Ordo Saclonum, and I have examined most of their authonties in the original I have also computed many of the test calculations for myself, some of which will be noticed piesently

The old Gieek year consisted originally of 360 days, divided into 12 months of 30 days each But do many of the Greek festrals depended on the moon, it was son descovered that the true length of a mean lunation was about $99 \frac{1}{2} d 2 y$, and that of a solar year about 36 iduy 4 Vanous methods were auloptid liom trme to time fir accommolating the computation by luma houths to the solar year In the tune of Penkles the enneuten is, or cycle of \& solal yeas, was in use This consisted of 8 lunar yeas of 3 j4 day's cach, with the addinon of 3 antercalary months, in the Bid, jth, and sth fuas, maling a total of 90 lunations or lunar montlis Buta, 8 sola jedis of $36 \cdot \frac{1}{4}$ days contan 9022 days, whie 99 lunation of 292 dag amunt to only $2920 \frac{1}{2}$ days, fhere was a deficency of one day andir half in evtry cycle of 8 yeans

To ruacdy thus defect Meton proposed in B C 432 his famous cyele of 10 whin yras of 36 tid day's each, which differs by ouly a small fiaction from 295 lumations Metons value of the 15 solat yeara in 6940 days was a little in excess of the t_{1} uth, as a year of 30 at day aryes only f93975 days m 15 years As thas excess of $\frac{1}{t}$ day amountwit to a whole day un 76 years, Kallippus in BC :330, whoduced the cy cie of 76 years, or four Metome periods, fiom which be retienched the extia day But

 Timochalis of the abth and 47 the years heing anne communes, that he closed the uth Metomic cycle at its 8th year, on BC 330, which, accordingly, became an anuua contmunts as the 1st of the Kallippre cycle of 76 years, which could not have happened if the onginal Metonic cycle had not been interrupted But Cluton quotes a maible which renders this ariangement doubtful It is quite certain that it conll not have been adopted in Syin, as we know that the year 148 of the Seleuhdan
era, or B C 165-64, was intercalary,* which is true of the Metonic cycle, but disag ees with that of Kalhppus As the Parthian coin of Vologases III shows the same accordance with the Metonce reckoning, there can be no doubt that the Kallippic correction hid not been introduced into elther Syria or Parthia Clinton also deduces fiom "the three years described by Ptolmy as 67, 75, and 82 of the Chaldwans, commeneing respectively October 15, Ortobev 16, and October 1, that the Maeedomans must have recerved the cycle in the 9th year of a Metonce arad-xacdesaernpes, which would be the second of a Kallippic. For this reason I have adoptcd the Metonic cycle in the aceompruming tables, which show the initial day of everv year down to the clour of the Parthan empire I have numbered the Met, nuc eycles I, II, JII, IV, \&c, and should it be required to convert any date wito the Kallipue reckoning, it is only necessary to thow back evely date in ench penod of 76 y cars liy one day, or, as the Kallippie correction sas establwhad in BC 330, to antedate by one day cray mind day m the Mrome Cy cles IV, V, VI VII, by two days thosc of Cyeles VLIJ, IX, A, XI, by threc days those of Cycles XII, X11I, XIV XV, and so on, deducting one more day for evuly four Metonic cycles

In the old cycle of 8 years the lunar months consusted nominnlly of 30 days each one 'ray being "omitted between the 20th and 30th of every alternate monil But m those months fum whinch a day was deducted, the last day was still ralled-panar, and the day omitted was perhaps the 29th, on any othex day but the ?0th + Meton also retained the nominal value of the noonth at 30 dara bit he pioposed a new scheme for the days to be omitted As 235 hanations at 30 thys each amounted to 7070 dars on 110 days in exces of the 6940 dara assigned to 19 solar years, he dersed the sumbrous abl mennemunt plan of omitting every 63rd day thaughout the cuch bat it is not known whether he monded on excluded the seven motralary months These omitted days ol nurear, itapron μ, are shown in the table, which is altered from Clintois Attic tahles to suit the Macedoman Calendar

The seven intercalary months of the Metome cycle were added at the end of the 3 rd; 5 th, 8 th 21 th, 13th, 16 th, and $10 t h$ years But in the Macedouian Calendar the embolismic month wis placer in the middle of the year nmmediately preceding Xanthikos + C'linton supposes that the embolismic months weie also subicet to the etrenchment of the 63rd

[^30]day, should it happen to fall upon them But this cannot have been the case, otherwise the number of omitted days would have amounted to 1119 , or nenrly 2 m excess of the required number of 110 Meton's scheme consisted of a cycle of 19 years, each of 12 months of 30 days, with seven intercalary months also of 30 days, making altogether 7050 days, from which 110 days weie to be deducted to oltan the requied number of (6940 days, by omitting every 63rd day Now if the embolismic months had been subject to curtanlment, the number of omitted days would have heen 112 But if they were not subject to these omissions, the requred number of 6940 days would have been obtained by passing them over, and strihing out the day from the following month This arangement is shown in Table VII, where the embolismic month of 30 days is placed in the maddle of the year between Pustron and Xanthhus

But these is another gialo objection to Chaton's scheme, namely, that it would make all the last tou montha of the cycle full months of 30 days, and as the tist two monthe of each eycle were necessarily fall months, then would have bee n molers than is conserutive full monthy all lumped together l look upon thas resule as quite fatal to lus selin me

Now, the muangement wheh I propose, an shonen in Table VII, is quite fier feom thin defect a it has not cran a harte motance of thee full monthes comung tose the and mak one of thes hollons on short months-mamely in the last 10 of one cybly ind first twn yenrs of the suceceding one A ording to (hator, scla me if a new moon had fallen in the tunt day of the fit of tle she comecotive full montha n new moon wculd have occurcel thre whole days before the begmongr of the seventh mouth $\mathrm{By}_{\mathrm{y}} \mathrm{my}$ anangement, the new moon would only

To teat the tablen, I will tahc the date of the battle of Arbela, which tooh place on the twelfth day atter an telpme of the moon, the two al mie, having becuduan mp facmy cach other on the eleventh night after the echpes Now the day of battle has been fixed to the 2nd of October BC 331 by the mention of this eclipere The eclopse tuok place on the night of 20 th of September at full moon, and the new moon.which opened the nexi Macedonian ycar, muat, therefore liave fallen on the 5 th of October According to my table, the new yca's day fell on the 4th October We know that the battle took place very near the end of the Macedouran month, as Anstander had foietold that "a battle would be fought in that veiy month"* Thic 2nd of October was the 29th of Gorpieus, or the last day but one of the month

IX.-ERA OF PARTHIA.

Tre notice of a Parthian era was discovered by Cor Smith amongst the cuneifurm records at Babylon. Three Parthian tablets were obtained at Babylon itself, but only one of them was perfect This gave a double date as follows -
" Moath _—— 23id day, 144th year, which 1s called the 208t, year, Arsakes, king of kings"

George Smith gives the year 248 BC as the first year of the Parthan eia But as the first year of the Seleukidan era did not begin until October 312 BC ol 311 k, only three months of the year 248 at the vely utmost can be assigned to the first year of the Parthian era But if, as 19 quite possible, the Parthan era did not begin until about the muddle of the Seleukidan year, its mathal ponnt would have been in April 247 BC, ol even later, instead of in October 248, and it would not have ended untal Apul 246 or later Now Antiochus If Theos died in January $240, \dagger$ and as Strabo, Appian, and Sudas, all agrec in assigning the revolt of the Parthans to the period iminediately following the death of Antiochus II, I think there is a very strong reason for adopting some middle month of the year 247 BC as the imital point of the Parthian era I had alieady aclopted the year 246 for the nse of Bactrian independence, on the testimony of the authors above quoted, in my account of the Cinins of Alexander's successors in the East \ddagger And as 1 have shown that the date of the death of Antrochus may easily have fallen within the first year of the Parthian eia as now established by the cuneiform inscuptions, I think that the year 247 has a better clam to be considered the starting point of Paithian independence thau the previous year 248

[^31]
X -Vikramaditya samvat.

$-\infty=$

The Vikramaditya Samvat, or era of Vikramâditya, 18 reckoned from the vernal equinox of the year 57 BC , and the cotopletion of the KalıYuga year 3044 It is used all over Northern Indıa, except in Bengal, where the Saka era has been generally adopted It is used also in Telngâna and Gujaiât, but in the latter province the year does not begin until seven months later than in the north, or with the lat of Kartik-Sudi, which now falls during October, but which, at the beginning of the Christian era, fell between tie maddle of September and the middle of October

This era is said to have been estabhshed by Vikramâditya, a. kıng of Ujain, to commemorate his victoly osel the Sakas The earhest date yet found in any insciption, with the name of Vikıamâditya attached to it, is one of Raja Jâjka, whose name is aheady well kuown from the Morbi inscmption bearing the date of 585 of the Gupta era In this new unscription the date, as read by Pandıt Bhagwân Lâl, us thus expressed
"In the Vikrama Samvatsara 94, in eildition to 700, on the 30th day (amavdeya) of the dark half of the ronth of Kartika, Suadey, in the afternoon (?) on the occession of a solar echipse"

The text of this inscription has now been published by Dr Buller Who gives the following tianslation of the date *
" When seven hundred years of Vikrams exceeded by minety-four (in figuies) 794 (had passed) in the second half of the month Kârtika, at the new moon, on a Sunday, under the constellation Jy eshtha, on the occasion of an echpse of the sun"

[^32]Now the last day of Kartika in the Vikrama Samvat 794 was the 28th of October AD 737, which day was a Monday, and not a Sunday as stated in the inscription, and there was no eclipse on that date, Dr Buhler, therefore, suggests that, as "the figure for the year probably refers, as usual in Iudian dates, to completed years, the grant must have been 1ssued at the end of Kartika (in Gujarlt the first month) of Vikrama Samvat 795." Now this 18 absolutely amposerble All Indian dates are given in completed years, and the Gujarat year of Vikrama Samvat 794 began on the 30th September 737 A.D, and ended on the 18th October 738 Ou this point there 28 no possibility of mistake, as the date 18 recorded in words as well as in figues It is true that there was an eclipse of the sun on the 18rh October 738, but that date, according to Hindu reckoning, was the last day of Aswina, and was a Saturday and not a Sunday At present the Vikramàditya years begin with the 1st of Kârtika, but Abu Rihan mentions that in Sindh the year began with the following month of Mankhir, or Mâigasiras * Now, if this was the case in the nexghbouring country of Gujarât, the month of Kartike would have fallen in the end of the year 794, and if theie had been no intercalary month, the last day of Kârtika would have been the actual eclpss day, 18th October 738 AD But, according to the usual reckoning, the month of Ashadha was intercalary in that year, so that the last day of Kârtika fell on the $16 \mathrm{th}_{\mathrm{h}}$ of November As_{s} it is quite clear that there must be a mistake somewhere, I think it pro bable that it may be in the name of the month, I would, therefore, propose to read Aswina 794 for Kêrtika 794, which would agree with the real echpse day of 18 th October 738 But as that day was a Saturday, a very mauspicious day, the whiting of the grant was probably mate on the following day, or Sunday, which was the first day of Kârtika, and this might have led to the substitution of the name of Kârtika for that of Aswina as the actual day of the echpre

But a very much earleer date, presumably of Vakramaditya, has been brought to notice by D_{1} Buhler in one of the Gujaît inscriptions of Jayabhata, which, although no era is named, must also certanly he referred to the Vikramâditya Sarmvat \dagger He reads the year as "Samvat 486, Sunday, the tenth day of the bright half of Ashâdha-Sud, when the sun entered the sign of the Scorpion"

The Vikrama Samvat year 486 began in Gujarat, acecrding to the present reckonıng, on the lst Kârtıke-Sudı, or 28th September A.D 429,

[^33]so that the 10 th of Ashediha-Suds would have fallen in the following year, A.D. 430 As there was no intercalary month in that year, the 10th of Ashâdha-Sudı was the 99th dry calculated from the 1st ChartraSudi, or Tuesday, 11th March 430, which brings the date to Tuesday the 17 th June, thus agreening with the Tuesday already calculated by two Bombay authorities for Dr Buhler But as the day was a Sunday, according to the insciiption, it seems to me not improbable that the date may not have been read quite correctly The only year whinch I can find that agrees with the week day indicated is Vikrama Sampat 497, in which year the 10 th of Ashêdha-Sudi fell on Sunday, the 15 th June A.D 441 If the figure for 80 was myured below, as the figure for 400 certanly was, then the decumal figure read as 80 , might have been 90 and the Samvat yeal might, perhaps, be 497

In the Jain books also there is very early mention of the Vikrama Samvat Thus the Satrunjaya Mahatmya professes to have been written 477 years after Vikrama, or in A.D 420, when "Silêdıtya, kıng of Vallabhı, expelled the Buddhists from Saurashtra, recovered Satrunjaya and other places of pilgrimage from them, and erected many Jain temples "* The era of Vikrama also is said to have been established by Vikramârka Raja 470 years after Mahâvira, or in $527-470=57$ BC From the way in which he is spoken of as "honouriag the advice of Siddha Sena Suri as the words of Jana," it would appear that Vikramârka was a Jaina, which would account for the use of his era in the Jaina books, as well as for the non-mention of it in early Brahmanical inscriptions

Most of our early writers, as Colebrooke, Wilford, Tod, and Jervis, have vitiated their chronology by placing the mitial point of the Vikramêditya era in 56 BC, instead of in 57 BC , as shown by Prinsep \dagger The following examples from Colebrooke and Tod show how necessary it is to be strictly exact in dealing with dates

1 In one of "Three grants of land found at Uyayın," the recorded date 18 an echpse of the moon in Srâvana of 1200 Samvat Using the erroneous equation of 56 , Colebrooke identifies this eclipse with that of the 16th July 1144 A D \ddagger But the true date was $1200-57=1143$ AD, in which year there was an eclipse of the moon on 28th July, which day was also the full moon of Srâvana

[^34]2 But Tod's mistake as even more curnous He quotes the wellknown Balabhi inseription, whech gives the month of Ashadhe of the year 1320 of Vikrama along with the yean 045 of the Balabhi era. He eccordingly takes the yeat 375 [or 1320-945] of Vikrama as the initial point of the Balabhi era from which, deducting 56, he obtains AD 319 Here has equation of 56 gives a true result, because he $1 s$ dealing with an inscription from Gujarât, where the Vikrama yoar does not begin until 1st Kartika-Sudi In the same inscription the Hijra date 18 also given as 662 Now, as this yeai did not begin until the 4th November 1263, it is obvious that the Hindu month of Ashadha, or June-July, naust belong to AD 1264, and not to AD 1263 We thus learn that the Vikrama Sampat year referred to in the inscription must have begun in October, as is still the practice in Gujarât, and that the year 1320 must he reckoned from 1st Kârtika-Sudi, or from October AD 1263 to October 1264, and not from March 1263 to March 1264 The equation for the Gujarat reckuning of the Vikraina Samvat 18, therefore, $56 \frac{1}{6}$, on, in round numbers, 56 , which gives $\Delta D 1264$ as the equivalent of the Vikrama Sainvat 1320 , as well as of the Hıjra year 662 If the yeai of Vikiama had been reckoned from the last new moon preceding the vernal equinox, the date of the inscription would have been $1320-57=$ 1263 A D, so that the month of Ashêdha (or June-July) would have fallen foun montis before the beginning of the Muhammadan jear 662

XI -GRAHA-PARIVRITHI CYCLE

-rentor
This is a cycle of 90 years, which is in use ouly in Southein India Warren has desciibed it fiom the account of the Poituguese Missionary Beschi, who lived for forty years in Madura It begins in the Kall-Yuga 3078 , or BC 24 As the second cycle would have fallen in AD 76, it seems probable that it may have some connection with the Jyotishi cycle of Jupitel, which dates from the same period

XII.-SÂKA ERA.

Thz Saka-kal, called also SAkca-bhripa-kal and Sdkendra-kal or the "era of the Saka Kıng," is perhaps more widely used than any other era Abu Rihan says that it was specially employed by the astronomers But Aryabata and his predecessors would appear to have made use of the Kâli-Yuga for all their calculations, and it was Vaiâha Mihira who first made use of the Sâka-kal in astronomical works Abu Rihân, who correctly describes it as dating 135 years after Vikramaditya, eays, that "Saka was the name of a king who reigned over the country gituated between the Indus and the Sea, Vikramâditya marched aganst him and kalled him in a battle fought near Korur, between Multan and the Fort of Lum" The town of Kahror still exists in the neighbourhood of Multan and Bahawalpur. But this Vikramêditya, as Abu Rihann remarks, could not, owing to the long interval of 135 years, be the same as the famous prince who extablished the Vikrama Samvat The name of the Saka king was Sâlivâhan, and accordingly the era $1 s$ now very generally called Sâka Sâhvâhana It is also known as the Sâka Samvat.

The reckoning of the Saka ers begins with the vernal equinox of the Kalh-Yuga year 3179 , or A D 78 But as the Indaans count only by completed years, the year 1 begins with the vernal equinox of KallYuga 3180, or A D. 79 In Northern and Southern India it is usually employed along with the luni-solar calendar, but in Bengal it is generally used with the solar calendar

In converting Sâka dates into Christian reckoning, 78 years must be added to the given date, and unce versa to convert Christana dates into Saka reckoning, 78 years must be deducted from the former

XIII.-GUPTA ERA

- 0 -

The Gupto-kal, or Gupta era, is not mentioned by any native writer, although it is found in several ancient inscriphons, as well as on the coins of the Gupta kings It is however noticed by Abu Rihan, who makes the singular mistake of dating it from the epoch of their extermination, and of confounding it with the era of Balabhi Now the mitial point of the Balabhi era is known absolutely from Colonel Tod's inscription, which makes the year $1=319$ AD, which as precisely the same date that is assigned to it by Abu Ruhân, who says, that it is posterior to Sâka by 241 years, or $241+78=319$ A D But as he goes on to say "Apparemment Ballaba suivit immediatement les Guptas," it is clear that the Guptas must have reigned before A D 319

The contusion about the two eras has probably arisen from the fact that the Balabhi kings, in all their copper-plate gants, continued to use the Gupta era instead of making use of the Balabhi era itself The following dates of the Guptankêl are found on the coins and inseriptions of the Gupta kings and in the records of their contemporaries

1 Samodra Gupta
2 Orandra-Gupta
5 KUMARA-GUPTA
4 Skanda-Gupra
5 Budha Gufta

6 Reja Hagtin

7 Bhja Safgemoba

Copper-plate, S_{40}
-. Inscriptions, 88293
Inscription, 8 94 98-126
$\left\{\begin{array}{l}\text { Insoriptions, S 137-138-141-146 } \\ \text { Coins, S 144-145 } 149\end{array}\right.$
(Inecriptions, 8 165
<Colns, 174-180 odd
(S 166-and year Mbher Vassthcha
$\left\{\begin{array}{l}8163 \text { (resd 173) yebr Mahk Aswayuju }\end{array}\right.$
|B 191 Mah
\$ 209 Mank Aswajaja.

The last four dates, which are recorded in two different reckonings, I have already made use of in my attempt to fix the initial point of the Gupta-kal * The title of maha, prefixed to the names of the four years, shows that the reckoning belongs to the Lesser Bârhaspatya Chakra, or

[^35]12-year Cycle of Jupiter. This cycle I have already described, and as the General Table gives all the names of the years in due order, marking each period of the omission of a name by a black circle, it will be easy to follow the arrangement by a reference to the Tables

As the 12th part of one revolution of Jupiter is considerably more than four days less than one. solar year, a difference which amounts to one whole year in a hittle more than 85 solar years, the rule is to omit every 86th name Now the double dates which I have given above show that, from the year 156 to 209 of the Gupta era, there was no name of the Jovian Cycle omitted As this fact seemed to me to offer a ready means of obtaming an approximate date for the beginuing of the Guptakal, I diew up a Table showing the names of all the years of the 12 -year cycle from the beginning of the Chistian era down to the present day Now as there was no omitted name between the yenrs 156 and 209 of the Gupta era, or for a period of 54 years, the first date of Maha Vaısâkha, or Gupta-kâl 156, must he wathin the perıod of 32 years (86 - 54) succeeding one of the omitted names On refeining to the General Table, where the names of the years of the 12 -year cycle ale all given, it will be seen that the date of 156 Gupta-kil must, therefore, he within some one of the following peliods

$$
\begin{aligned}
& \text { 1-A D } 225 \text { to } 257 \text {, or } 225+32 \\
& \text { 2-A D } 310 \text { to } 342 \text {, or } 310+32 \\
& \text { 3-A D. } 395 \text { to } 427, \text { or } 395+32
\end{aligned}
$$

In the first period the only dates on which Mahi Vasakba falls are three, namely, AD 227, 239, 251 But as these dates would place the beginning of the Gupta era in AD 73, 81, or 95 , they may be given up as too early

In the second $\Gamma^{\sim}{ }^{\prime} 10 d$ the dates of Mahâ Varsâkha are A D 310,32y, 334 If 310 be aken as 156 of the Gupta-kal, then the year 1 wall fall in $310-155=155$ AD This would place the date of Budha Gupta's Pillar in $154+165=319$ A D, but as the week day of 12 th Ashâdha-Sudr in Budha Gupta's nnscription fell on a Tuesday in that year, and not on a Thursday as requized, that date must be given up *

If the middle number 322 be taken as 156 of the Gupta-kal, then the year 1 will fall in $322-155=167 \mathrm{AD}$, and the date of Budha Gupta's Pillar in $166+165=331$ AD, in which year the 12 th of Ashtidha-Sudi did fall on a Thursday

[^36]If the thind namber 334 be taken as 1066 of the Gupta-kûl, then the year 1 will fall in $334-155=179 \mathrm{~A} D$, and the, yeal 165 of Budha Gupta's Pillar in A.1) $178+165=3 \neq 3$, in wheh year the 12 th AshâdhaSudi fell an a Monday

In the group of 85 years frc n AD 310 io 395 , there 18 theietone only one year, AD 322, that will satusfy the two requinements of being a Mahê, Vasâkha year itself, and of having a Thursclay as the week day answoring to 12th Ashâclia-Sudi of the year 165 of tlje Gupta era.

In the second group of 85 yeas from A D 395 , to 480 , the only dates on which Maha Vaisâkha falls within the limit of 54 yeais preceding 480 , ane the two years 405 and 417 AD , nom which, delucting 155 , we get the yeais 250 and 262 as two now starting points for the Gupta era

First, taking 250 as the year 1 of the Gipta-kâl, the yeai 165 will be AD 414, in which year the 12th-of Ashadhe-Sudx fell on a 'I'nesday, and not on a Thursday

Next, taking 262 as the year 1 of the Gupta ela, the yeni 165 will fall in AD 414, in which year the 19th of Ashêlhn-Suit fell on a Thursday, as requued.

We have thus in the twa-groups of years, extending from AD 310 to 305 , only two dates which fulfil the two conditions of the Mahi Vassakha year, and the 12 th of Ashatha-Sucli beng a Thuisciay These two dates place the 1st yeal of the Gupta-kal'either in AD 167, or in AD 262

It is needleas to try a thind group of years, as the only possible Mahâ Vasâklıa dates would fall in AD 488 and 500 , which would place the 1st yeal of the Gupta era in AD 233 or 345 , both of which are certainly too late

When I submitted these results to my learned finend Pandit Bapu Deva, he pointed out that the 12th of Ashifllia-Such in AD 331 was a Fiday, and not a Thursday. But it is so only by the reckonng of the Suiya Suldhanta, which I have puxposely rejected in dealing with these Gupta dates, as Vaiaha Mihira, the author of the Suiya Siddianta, lived at least two centuries later than Budha Gupta, so that it is quite impossible that his conected tables could have been used in computing
the calendar of the Gupta period. My calculations have been made from the tables of Aryabhatta, according to which the 12th of AshedhaSudi in A.D 331 was actually a Thursday. I am of course aware that Aryabhatta $1 s$ also later than Budha Gupta, but as his length of year differs from that of his predecessor Parassare, by little more than half a second, the adoption of Arysbhatta's table will not affect the weak day. The case is dufferent with Varaha M2hira, as his year is considerably longer than that of Pardsara and Aryabhatta This difference was duly notıced by James Prinsep, who remarks that "Warren's Kala Sankâlita gives the beginning of the Hindu solar year invariably one day earlier than the reckoning followed in the tables of the Sudder Dewanee. This arises from his using the Tamil year of the Arya Siddhinta, while the Surya Siddhanta as used in Bengel"

In AD 331, the Hindu lum-solar year began on the 23rd February, according to Cowasjee Patell, who, throughout his chronology, has used the tables of Aryabhatta In this year the month of Bhêdrapada was intercalary, but as this month $1 s$ later than Ashâdha, the date will not be affected by the intercalation Now the 12th of Ashadha-Sudi 18 the 101st day of the Hindu luni-solar year, and as the 23rd of February was a Tuesday, the 101st day was a Thursday in AD 331, according to Aryabhatte's tables But according to Varêha Mihira, the Hındu lunısolar year began one day later, on the 24th Febraary, and consequently the 101st day would be Friday, 4th June

The iesult of this examination is that there are only two possible dates for the commencement of the Gupte era, which fulfill the conditions of the two tests which I have applied,-1amely, AD. 167 and AD 262 We have accordingly to choose between these two datee that which agrees best with some of the other conditions.

By the first date, the period of Samudra. Gupta, the son of Chandra Gupta I, the piesumed founder of the era, would fall between the year 200 and 230 AD, which agiees whth the fact that he was a contemporary of the Devaputra Shahı, Shahen Shahi, or the king of the Great Yee-chi Indo-Scythians.

By this earler period also the date of Dhiva-bhatta would fall in $166+447=613$ AD, or just 28 years before Hwen Thsang's visit to Bolabhi in 641, during his reign.

Taking the later date of A.D 262, the period of Samudra Gupta would fall about AD 290 to 330 , which would place him some considerable time after the Great Yue-chi had aheady got md of their kings and had established mulitary chefs (2 Satraps)

This later period also would fix the date of Dhrûa-bhatta in $261+$ $447=708$ A.D, or just 68 years after Hwen Thsang's visit, which is much too long a period for the reign of a aingle king

For these reasons I much prefer the earher date of AD 167 as the first year of the Gupta era This earher date also 18 attended by a curious coincidence, which seems to me to offer a very stiong confirmation of its acculacy This is the correspondence in time of the death of Skanda Gupta with the foundation of the Balabhi era His latest inscription is dated in S 146, or AD 312, accoiding to the earlier initial point which I have adopted But one of his silver coins in my cabinet is dated three years later, or in S 149, or A.D 315, which is within four years of the establishment of the Balabhı era I think it very probable, therefore, that the foundation of this era may have been brought about by the opportunity of Skanda Gupta's death This would agree very well with the statement of Abu Rihâu, "that the fall of the Guptas corresponded with the establushment of the Balabhi era." *

In my attempt to fix the date of the Gupta era I overlooked a very mportant insciption of Siladitya V, the father of Dhrava-bhatta of Balabhi This inscription is dated in S 441, while the son's insciption 1s only six years later. Supposing its dates to be recorded in the Gupta era, then Siladitya V would have been relgning in $166+441=607 \mathrm{~A}$ D, and his death may be placed about AD 610, or three years befone the date of his son's inscription in S 447, or AD 613 Now Silàditye V was the tenth generation of the Balabhi kings, and if we place the foundation of the Balabhi monarchy in AD 319, the ten generations will have reigned from AD 318 to 610 , or for 202 years, which gives an average of $29 \frac{1}{4}$ years to each generation During this period there were 18 reigns, which give an average of nearly $16 \frac{1}{4}$ years to each reign

That the era used by the Balabhi kings was that of the Guptas seems to be almost certan, as the Senapati Bhataraka, the founder of the Balabhi dynasty, is said to have been the governor of Surâshtra during the last two years of Skanda Gupta's relgn If then we accept the

[^37]year A.D 319 as the date of the foundation of the Balabhi monarchy, as well as of Balabli itself, the Gupts era must be placed at least 146 years earher, or in AD 173, according to the date of Skands Gupta's latest inscription, or 149 years earlier, or in AD 170, according to the date of his latest coin. This direct succession of the Guptas by the Balabhis, already noted by Abu Rihk̂n, is confirmed by the traditions of the people, which state that, on Skanda Gupta's death, the Senapati "assumed the title of king of Surâshtia," and "founded the city of Valabhinagar" From these statements I gather that the Valabhi era must almost certandy be dated from the foundation of the city of Valabh, which followed immediately after the death of Skanda Gupta. For this reason, therefore, I think that the date of A.D 166, which I have already deduced for the begroming of the Gupta era, from the copper-plate inscriptions of Raja Hastin and his son Saukshoba, compared with the week day date of Budha Gupta's Pillar at Eran, has a better clanm for acceptance than any other that has yet been proposed

The new inscription of Jaika (which hes not yet been published) has induced Dr Buhler to fix the beginning of the Gupta era about A D 206-209 Buteven the earlier date of 206 would place Suladitya V in $206+441=647$ A.D, just six years later than the visit of Hwen Thsang, who found his son Dhrava-bhatta on the throne

This inscription of Dhrûva-bhatte I had previously overlooked until my attention was drawn to it by Dr Burgess

It tells altogether in favour of any earher date, for the inscription of Dhráve-bhatta himself is dated in 447, or only six yewe later than that of his father

As the latest possible date for Sildditys ∇ is 640 AD (the year before Hwen Thsang's visit), the latest possible starting point for the Gapta era 18 $640-446=194$ A.D

According to my present calculation of the initial point of the Gupta eia in AD $166=\theta$, and $167=1$, the date of Siladitya V will fall in $441+166=607$ A D, and that of his son Dhrupa-bhaita in $447+$ $166=613, A D$

The published inscription of Jaika, from Morbi, is dated in the jear 585 of the Guptamal, or era of the Guptas. It records a grant made

[^38]on the occasion of a solar eclipse, but the inscription itself is dated on the 5th of Phalguna-Sudi, which was not therefore the date of the grant, as a solar eclupse can only happen on bada 14th or the last day of the waning moon According to my calculation of the initial point of the Gupta era, the year 585 will correspond with $585+166=751 \mathrm{AD}$, in which year there was an eclipse of the sun on the 25 th of August

It 18 true that this date 18 about five months earher than the actual date of the record But this in not a difficulty of any consequence, as we have a sumilar interval between the actual date of a grant and the date of ats record on copper in the Râjum inscription of Tivera Deva, king of Kosala His grant was made on the 12th of the solar month of Jyeshta, but was not recorded untıl the 8th of Kârtika, or just four days less than five months later The day of the monih I have read myself, as it is not giveu by Wilson in his Translation, see Asiatic Researches, Vol. XV The eighth day of Kartik 18 recorded both in words and in figures

XIV -CHEDI, OR KALÂCHURI-SAMVAT.

Teere is a considerable number of inscriptions of the Kalechuri Rajas of Chedi, with varions dates from S 792 to $\mathbf{S} 934$, which, from the style of their characters, as well as from the names of other kings mentioned in them, cannot possibly be referred to the era of Vikrama The actual name of the era was duscovered by Mr Beglar in several inscriptions from the district of Raypur to the east of Nagpur In some it is named the Chedr-Samvat, and in others the KaldchurmSamvat All the then available dates have been discussed in my account of the Kalachuri inscriptions * From these I deduced that the initial point of the era must have heen A.D 249, "as that year gives the correct week days by computation for four of the recorded dates" Since then I have been able to correct two of the discrepant dates noticed in my account, while I have myself found two new dates As all of these give the correct week day when calculated from the initial point of $249 \mathrm{AD}=0$, and $250=1$, I feel satisfied that this 18 the true starting point of the Chedı era.

During my late tour in the Central Provinces I obtained the two new inscriptions of the Kalfohuri or Chedi-Samat already mentioned The date of the earlier one 18 given as Samvat 866, Marga-Sudu 9, Ravau, or "Sunday the 9th of the waing moon of Marga, 866" Taking my previously ascertanned starting point of the ora in AD 250 = 1, the date will be $866+249=$ AD 1115, in which year Jyeshta was intercalary, and the 9th of Mârga-Sudi fell on a Sunday

The date of the second inscription is Samvat 934, Karttrka-Sudu 5, Budhe, or "Wednesdey the 5 th of the waxing moon of Kârtika in the year 934" Adding 249 to 934 we get the year A.D 1183, in which the 15th of Karttilka-Sudi was a Wednesday

One of the disciepant dates, noted in my previous account, was that of the Benares inscription of Karna Deva, which I gave as "Samvat 793, Phâlgun-Badı 9th Monday" But as the 9th of Phâlgun-Badı in $793+249=$ A.D 1142 was a Sunday, I have come to the conclusion that I may perhaps have musiead 793 for 792

This conclusion was suggested to me by the fact that Wilford read the unit as 2, and that the 9th of Phâlguna-Badin the preceding year, or $792+249=$ A D 1141, was actually a Monday.

The other correction is in the day of the month in the ycar 808, which I read as Aswina-Sudi 7, instead of Aswina-Sudi 2, which a fresh examination has shown it to be As the 7th was a Saturday (as noted in my previous account), the 2nd was of course a Monday, as stated in the inscription We have thus got no less than eight dates, all of which agree in placing the initial point of the Chedı or Kalâchuır era in A.D 249-the year 250 being reckoned as 1

There are three inscriptions which give the name of "KalachuriSamvat," dated respectively in 896,898 , and 910 , but the first two only name the week day Two other inscriptions, dated in 919 and 933, give the name of "Chedr-Samiat," but they do not give the week days.

The initıal ponnt of the Chedı or Kalâchuri-Samvat is therefore satisfactorily established by the enght following inscriptions, in which the calculated week days agree exactly with the recorded ones -

Infceription	Cused S	A D	
Bemares	792	1041	I'halgun Badı 9, Monasy
Nagpur mureum	866	1115	Marga Sudi 9, Sunday
Rajim	896	1145	Màgha Sudi 8, Wedneadry
Seorinurayen	898	1147	Asmina Sudi 2, Monday
Tewar	902	1151	Ashûdha Sudi 1, Sunday
Bhera-Ghfit	907	1106	Mârgasiras Sudi, Sunday
Bhera-Ghat	928	1177	Magha Badi 10, Monday
Sahaspur	934	1183	Kartukn Suds 5 Wednesday

I must mention, however, that there are two other inscriptions in which the calculated week day differs by one day from that recorded. These are-

Bharhut	909	IL58	Srupana Sudi 5, Wednesday, comes ont Thursday
Tewar	928	1177	Sravana-Sudı 6, Sundey, comee out Mondey

The Rajes of Chedr are mentioned in the inscriptions of the neighbouring lungs from AD 520 downwards But the earlest Prince mentioned in their own inscriptions is Kokalla I , the contemporary of Bhoje of Kansuy, whose dates we know to have ranged from A D 875 to 900 From his time down to the close of the dynasty, the Kalâchuri Princes played a principal part in the history of Central India Their capital was at Tripura, now Tewar, six mules to the west of Jabalpur But there was an eastern branch of the family which ruled at Ratanpur, of whom very little is at present known A list of the Rajas of this family 18 gaven in the Gazetteer of the Central Provinces Some of the names correspond with those found in the inscriptions, but the dates are all wrong, as they have been referred to the Samvat of Vikramaditya, instead of to the local Cheds era of the country.

XV.-ERA OF BALABHI.

Tri: inital point of the Balablu-kal, or era of Balabh1, is fixed by the account of Abu Rihân, as well as by the other dates recorded in Tod's inscription, to the year 319 A D According to the former, it was 241 years posteriur to the Sâka, or $78+241=319 \mathrm{AD} \quad$ Accoıring to the inscription, Sunday the 13 th Ashâdha-Badı of the yeai 945 of Srimad Balabhi, fell in the year 662 of Muhammad, 1320 of Vikiama, and 151 of the Suva Singha Samvat * The first year of the Balabhi eia was fixed by Tod by deducting 975 from 1320 , which gives 375 of the Vikrama Samvat as the year 1 of the Balabhi Samvat Then, deducting 56 from 375 , he obtained 319 AD as the equivalent in the Christian era

Now the difference between the Christian and the Vikrama starting points being nearly 57 years, the equivalent for Vikrame 375 should ber 318, and not 319 But as we know from Abu Rinan that the Balablin ena actually began in 319 , some explanation is required to show how 'Tod's erroneous factor of 56 gave the right year AD The explanation is a vely simple one,-namely, that the Vikramâditya years in the province of Gujaiat, where the inscription was found, began then, as they do now, with the month of Kdrthuce or October, and consequently the tiue factor for converting the Vikrama date into the Christian equivalent was $56 \frac{1}{4}$, or 56 as used by Tod The proof of this as equally simple The Hijra year 662 did not begin until the 4th of November 1263 A D This being the case, the mouth of Ashâdha (on June-July) of the Chinstian year 1263 had already passed by, and therefore the Ashadlir of Samvat 1320 of the Northern ieckoning cannot belong to that year But if we take the Southena reckoning prevalent in Gujeiat, then ${ }^{5} 6$ will become the nearest factoi, and Tod's 375 - 56 will give the correct year AD 319. Then deducting 56 from the given Samvat year 1320, we get AD 1264 as the concurrent Christian year This agiees exactly With the given year of Muhammad, 662, which began on 4th November 1263, and ended on the 23rd October 1264

So far as I am aware Tod's inscinption is the only one that has yet been found dated in the Balabhi era

XVI.-SRI-HARSHA ERA.

The Sri-Hai sha-hal, or "Eia of Srı-Harbha," $1 s$ mentioned only by Ahu Rihâı. Its initıal poınt slows that it was established by the famous king S_{11} Haishe Vardhans of Kanauj, from the 1st year of his reign It was used in Mathura and Kanany, and Abu Rıhin gives its initial puint from the Almanacs of Kashmir as 664 years posterior to Vikıamáditya, or 664-57 $=607 \mathrm{~A} \mathrm{D}^{*}$ I broughi to notice some years ago one uscription of Bhoja Deva of Kanauj, whech is certanly dated in this era. This inscription is at Prithudaka, or Pehoa, and is dated looth in words and in figuies in the year 276 Referring this to the eia of Srı-Harsha we get $606+276=882$ A D \dagger

But the inscriptions found in Nepâl by Pandit Bhagwân Lâl offer still earher instances of the use of this ela \ddagger The ealliest of these records, beanng the name of Ansu Varma, are dated in Samvat 34, 39, and 45 Now Ansu Varma was on the throne when the Chinese prilginn Hwen 'Ihsang visited Nepall in AD 637, which was in the very middle of his reign, as his eailiest inscisption above quoted is dated in AD 640 ($606+34$) and his latest in AD 651, which was near the close of his reign, as an inscription of his successon, Jishnu Gupta, is dated in S 48, or A D 654 Three inscriptions of Siva Deva are dated respectively in S 119, 143, 145, and one of Jaya Deva in S 153, or A.D. 750. Now Jaya Deva's mother is said to have been the grand-daughter of the "Great Aditya Sena, the illustrous loid of Magadha," of whom I have an inscription dated in S 55, as I read the two figures This would place Aditya in AD 661, or 64 years prior to his grand-daughter, the wife of Siva Deva

[^39]In AD 880 the Newâr era was introduced into Nepâl by Râghaba Deva. He is the suxth Prince in the Nepal hist after Jaybe Deva, and if Jaya reigned until abouk 170 of the Haisha era, or AD 776, there would remain only 104 years to be divided over the five inteivening reigns

None of the inscriptions describe the era by name, bat call it simply Samvat But, fiom the mention of Ansu Varma as the reigning king of Nepal by Hwen Thsaog, it is quite clear that the dates whuch I have quoted must belong to the Sri-Harsha era According to the lusts Ansu had one predecessor Siva Deva Varma, who, as be belonged to the old family that had been expelled, was very probably 1 estored by the powerful king of Kanauj, whose era he adopted

There are two copper-plate mseriptions of the family of the Kanauj kengs, who leugned from about 750 to $1,000 \mathrm{AD}$ The carher plate is of Mahendra Pâla Deva, the son of Bhoja Deva, whose date I have fixed from several other inscriptions as extending fiom AD 870 to 900 The date of Mahendia's plate may be icad as 815 , which, referred to the Sri-Harsha era, would place him in AD 921 The later plate 28 of Sr Vinayaka Pâla Deva, the grandson of Mahendra Pâla Its date sepms to be 386, which would place him in A D 992^{*} Shortly after this, Kanauj was conquered by the Râthors, who introduced the Samvat of Vikramâdıtya

[^40]
XVII. -HIJRA ERA

This era dates from the morning after the flight ($\mathrm{H} i \jmath \cdot a$) of Muhammad from Mekka to Medina, which took place on the might of the 15 th July AD 622 The year 1, therefore, began on Friday, 16th July 622 The year is a simple lunar one of 12 lunations or lunar months, of 30 and 20 days alternately The common year, therefore, consists of only 3.44 days But as a month of $29 \frac{1}{2}$ days is somewhat less than one mean lunation, an intercalary day is added to the last month in the aud, fth, Fth, 10th, 13th, 16th, 18th, 21st, 24th, 26th, and 29th years of encl period of 30 years, so that the year consists of $354 \frac{37}{50}$ days, which makes the mean lunation $29 \frac{19}{3810}$ days, or 295305555 This differs from the mean synodical revolution of European astronomers by only 0000332 of a day The Muhammadan lunar year of $354 \frac{23}{50}$, or 3543666 days, 1 s , therefore, 0970202 of the solar year of 36525 days of the Juhan reckoning

To find whether any given year is intercalary, divide it by 30 , and if the remainder be either $2,5,7,10,13,16,18,21,24,26$, or 29 , then the year is an intercalary one of 355 days, but if it be any other number, the year is a common one of 354 days

But to save the trouble of calculation for finding on what day of the Christian era any particular Hijra date falls, I have prepared two tables, by which the corresponding date can be obtained in a much shorter time by inspection

Thus, to find the corresponding date of Timur's capture of Delhi, which he has himself recorded as "Wednesday the 8th of the and Rabi 801 A H," first look in Table XVI for the initial day of the Muhammadan year in Chistian reckoning, which was Friday the 13th September 1398. Then turn to Table XV, and look for the price of II Rabi 8, from which run the eye upwards to the horizonfone of week
days, beginning with Friday, where the intersection will be found to fall on Wednesday, thus agreeing with the week day given by Timur Next look to the Roman numerals on the right, where it will be seen that "II Rabi 8 " was the 6 th day of the 13 th week, or the 97 th day of the Muhammadan year Then calculate from the 13th September 1398 as the 1st day as follows -

In September		-.		18 days	
„ October		\ldots	-	31	
, November	-	30	"
, December	-	-	-•	18	,
				97	dars

The corresponding Christian date was, therefore, the 18th December 1398, which, by the tables of the Chmstian calondar, was a Wednesday,

The following dates taken from several different authors agree with the tables

A. H				Pag\%	
	42	Muharram	$1=$ Tnesday	Baihakr, H M Ellıot, II,	61
	693	Sbaban	$29=$ Tuenday	Minluid, H M Ellot, II,	880
	638	Maharram	$8=$ Monday		838
	640	Rajab	$9=$ Friday		848
	645	Maharram	$2=$ Tharsiay		847
	655	I Rabl	$6=$ Sunday		SMA
	656	Muharram	6 = Sunday		818
	801	II Rabi	8 = Wedneeday	Timur's own date of captare of Delhi, H M E , III	448

Dowson erroneously gives 17th December 1398 as the European date of the captare instead of 18th The 17th December was Tuesday-
A. H 912 II Jamadi 8 Monday Brbar's Memoirb, page 201 925 Muharram 1 Monday „ 246 925 I Rabl 11 Sauday on 280 982 Safar 1 Friday \quad 290 938 I Rabi 16 Friday ", 347 936 Muharram 3 Tuebday " 425 949 Rajab 5 Sunday Akbar born-Bloohmann 963 II Rabi 2 Friday Albbar placed on throne at Kalanor by Bairîm
Occasionally, however, the week days of both inscriptions and books will be found to differ one day from the week days of the tables If this should be the case in several instances of the same writer, the discrepancy must be due to his having used a slightly different order of the intercalary jears. The numbers of the intercalary years which I have used in the accompanying Tables are those of Ulugh Beg, which
are the most generally accepted,-namely-2-5-7-10-13-16-18 -21-24-26-29. But according to Jervis the Indian Almanacs give three of the numbers differently, or one in each decade of each cycle. These different numbers are 8, 19 and 27, instead of 7, 18 and 26 The result 1s, that where the years 8,19 and 27 are made intercalary, those years will begin one day earlier than in the Tables, and every day throughout each of those years will also be one day ealier In the accompanying Tables I have placed Roman numerals against the intercalary years of the accepted reckoning, and stars against the three years which differ

I have found this discrepancy of a single day in the following dates -

	Recorded Date,		Date by Tablce		II, 327
A H. 630	Safar 20	Tuesday	Mondey		
634	Rajab	Friday	Thursday		
882	Muharram 1	Wedneaday	Tresday	Pandue insenption	
899	Ramean	Monday	Sunday	Babar's Memolrs	7
926	Maharram 1	Saturday	Friday		281
934	Mnkarram	Saturday	Fridsy		373
977	1 Rabi 17	Wednesday	Tueadey	Jahangir born	
1000	II Jamêdu 6	Satarday	Eraday	Tabakata Axban	

It must be confessed, however, that not one of the above dates falls in the 8 th, the 19 th, or the 27 th years, so that I can only suggest carelessmess on the part of the writers as the probable explanation of the discrepancies. The following more glaring instances will be sufficient to show that even the best Muhammadan authors are not free from eirors of this kind

> Mınhêj-A. H 634, I Rabı 18 —Sunday, should be Wednesday.
> Baber-A. H.
> H.

This last mistake has been noticed by Erskine
In using the general table of the initial days of the Hura years, it is only necessary to remember that all the dates up to the beganning of A.D. 1753 are given in Julian reckoning or Old Style, and from that date in Gregorian reckoning or New Style The week days of course remain unchanged, whichever reckoning is used The correction of the calendar took place in. Engalnd in AD 1752, when eleven days were struck out after the 2nd September, making the next day the 14th instead of the 3rd This change occurred towards the end of the Hijrs year 1165 In the table I have given the beginning of the year 1166 in the New Style as Wednesday the 8th November 1752 By the Oid Style reckoning the date would have been Wednesday, 28th October

To find the day of the weak on which any given year of the Hyra began, the following rule is given by Woolhouse-

1st-Find the year of the current cycle by dividing the proposed Hijra year by 30

2nd-Divide the number of cycles thus obtained by 7, to obtain the number of the penod

Now take the year 1000 A H as an example-
Oyolea $\frac{1000 \mathrm{~A} \text { H }}{83+10}=$ current year of cycle $7 \frac{33 \text { cyoles }}{4+5=\text { number of penod }}$

Then look in the following table for the intersection of the current year of the cycle, or 10 , with the number of the period, or 5 , and it will be found that the initial day is Satunday, which is correct

Current year of the cycle				Nomber of the period of T cycles						
				0	1	2	3	4	5	6
	8			Mon	8at	Thur	Tues	S	Frid	Wed
	9	17	25	Frid	Wod.	Mon	Sat	Thur	'Tues	S
* 2	-10	-18	${ }^{*} 26$	Tues.	B	Frid	Wed	Mcn	Sat	Thur
8	11	10	27	S	Frid.	Wed	Mon	Sat	Thur	Tues.
4	12	20	28	Thar	Tues	s	Fnd	Wed	Mon	Sat
* 5	-13	- 21	*29	Mon	Sst	Thinr	Toen	8	Frid	Wed
6	14	22	30	Sat	Thur	Tues	S	Frid	Wed	Mon
-7	15	23		Wed	Mon	8st	Thur	Tues	8	Frid.
	$\bullet 16$	${ }^{*} 24$		S	Fnd	Wed	Mon	Sat	Thar	Tue*

The calculation of this table is based on the fact that as the cycle consists of 30 years, the whole series of week day changes wall be exhausted in each period of $30 \times 7 \mathbf{- 2 1 0}$ years.' Thus the year 1 A H having begun on a Friday, the following yeats woutd also begin on Friday .-

0 S.

$$
\begin{aligned}
& \text { A. H } 1=\text { Friday, 16th July } 622 \text { A D } \\
& 211 \text { = Friday, 13th Apri } 826 \text {, } \\
& 421=\text { Friday, 9th January } 1030 \text { " } \\
& 631 \text { = Friday, 7th October } 1233 \text {," } \\
& 841=\text { Friday, 5th July } 1437 \text { " } \\
& 1051 \text { = Friday, 2nd April } 1641 \text { " } \\
& 1261 \text { - Friday, 10th January } 1845 \text { N S }
\end{aligned}
$$

As the calendar was corrected in England in A. D. 1752, during the currency of the Hijra year 1165, the last entry is given in New Style, or Gregoraan reckoning

But the initial week day of any gaven year of the Hijra can also be obtained by a short calculation, starting from any cne of the above periods Thus taking the year 1000 A H as before, and remembering that the intercalary days are inserted in the following years of each cycle-

$$
\begin{array}{lllllll}
2 & 5 & -7 & 10-13-16-18-21 & 24 & 26 & 29
\end{array}
$$

The calculation is as follows -
1000 A H. $-841=159$ years
$\times \quad$ i $=$ No of days in each vear in exoess of 50 weeks
636 days
150 yearn =5 cyoles - 55 days at 11 intercalary days por cyole of 30 yeara
In 9 years over δ oycles $=3$ intercalary days [2nd, 5 th, 8 th years]

Total 694 days

$$
+7-
$$

Weekn $98+1$ day - Saturdisy
that 18, one day over Friday $=$ Saturday, the same as denved from Woolhouse's Table*

When a full table 18 not at hand for finding a date by simple inspection, either of the above methods will be found very useful, as both are absolutely correct

[^41]
XVIII.-THE BURMESE COMMON ERA

The conmon eia of Burma which is now in use is the luni-solar calendar, which was introluced from Iudia in AD 638 The length of the year $1 s$ exactly the same as that of the Surya Siddhânta, namely, 365875648 days The solar year is reckoned in the same way as that of the Hindus, and accordingly it now begins on the 12 th and 13th of April, which is the calculated date of the sun's entiance into Aries according to Hindu reckoning The luni-solar year has 12 lunar months of 29 and 30 days alternately, with an mitercalary month at seven fixed pernods in each cycle of 19 years The jears in which these intercalary months are inserted are the

2nd, 5th, 7th, 10th, 13th, 15th, 18th
But the extra month is always inserted in the same part of the year after the month of Wahso, and is consequently named the second Waliso The names of the 12 months are the following -

1	Tigo	Chantra	Maroh-April
2	Kasong	Vasskika	April-May
d	Nayoug	Jyeshthe	May-June
4	Wahso	Abhadtha	Tune July
5	Wahgoung	Brfivana	July-August
6	Touthalın	Bhâdrpaida	August September
7	Thadinkyut	Aswias	September-October
8	Tasoung mong	Kêrtaka	Outober-November
9	Natdart	Agrahayana	Norember-December
10	Payatho	Paube	December-Januery
11.	Tabodweh	Maghs	January-February
12	Taboung	Phalgana	Febramry March

The year begins with the new moon immediately preceding the commencement of the solar year, and ends with the 30th day of Taboung

The initial point of the era is Saturday the 21st March AD 638 of the Julian reckoning, or 24th March A D 638 of the Gregorian reckoning In computing any dato the calculation is much aimpler than that of the usual iules for the Hindu luni-solar year, as the reckoning
us referred to the beguning of the era, snd not to the beginning of a yuge or mahâ-yuga several thousands of years back The procese is otherwise the same as that for any day of the Hindu luni-solar year, whth the exception that the fixed position of the intercalary month saves some trouble

To ascertain whether any particular year will be intercalary or not, it is only necessary to divide the number by 19 , and if the remainder be either $2,5,7,10,13,15,18$, then an intercalary month will be added in that year; but if it be auy other number the vear will be an ordinary one.

In India the only examples of Burmese dates that have hitherto been met with are in the few Burmese inscriptions found at the Mahâbodhi temple at Buddha Gaya. Three of these, which refer to the Great Temple itself, are of so much mportance that I gladly take this opportunity of giving my readings of their dates The longest inscription is on a stone slab which was found by the Burmese embassy fixed in one of the inner walls of the Mahant's residence Three translations of it have been published,-18t, by Ratoa Pala, a Singhalese Pali scholar, 2nd, by Colonel Burney, and 3 rd, by Mr Hla Oung, a Burmese scholar. The inscription piofesses to record the history of the original buiding and the successive repains of the temple Two dates are given in figures, accompanied, in each case, by the day of the week as well as the day of the month. The following is a brief abstract of this valuable record -

1-Asoke built the first temple
2-Temple rebuilt by Naik Mahanta
3-Temple restored by Raja Sado-Meng
4-Raja Sempyu-Sakhen-tara-Mengı deputed hıs gura Srı Dhamma Râja Guna to superintend the restoration of the temple work not completed

5-Varadasi Nalk Thera petitioned the Raja to undertake the work, which was then entrasted to "the younger Pyu-Sakheng" and his minister latha

This last work was begun in the Sakka Raj year 441, on Friday the 10th of Pyadola, and finished in 448, on Sunday the 8th of Tachung Mangla (or Tesoung-Mong)

Here I have given my own reading of the dates as 441 and 448, for the following reasons

A copper galt canopy, which was found by Mr Beglar carefully buried eight fect under the ground level to the west of the Great Temple, bears two mscıptious in Burmese and mediæval Indıan characters

The Burmese inscriptron is inuch injured, but I can still tead the name of Sri Dhamma in it The Indian unseıption, wheh is nearl perfect, opens as follows -

Sam 391, Sru Dharma Raja Guru

Here the date which is very clearly inseribed can only be refeired to the Burmese common ela of AD 638, which fixes the period of Dharma Raja Guru's visit to $391+638=\mathrm{AD} 1029$ Now the account of the later mission of "the younger Pyu-Saiheng" shows that it must have followed not long after Dharma Raja Guru's Mission I therefore lead the two dates as 441 and 448 , in preference to the very much later dates of 667 and 668 , which had heen generally adopted previously I have tested all the possible readmgs of these dates as 641, 647, 661, 667, 648, and 668, by the week days mentioned in the inscription Not one of them stands this test, whereas the two dates of 441 and 448 which I have adopted do actually agree with the week days recorded in the meciption The endence in favom of my readings 1s, therefore, doubly stiong The latel listory of the tomple will therefore be as follows

```
Burmese era \(391=\) A D 1929-Dharma Raja Guru's Mission
———441 = AD 1079—Restoration of temple begun by the younger Pyur
                                    Sakheng
———— \(448=\) AD 1086 -Completion of the work
```

These readings of the dates allow a period of 6 years and 10 months for the restoration, unstead of the short penod of only 10 months allowed by the former readings

The two dates noted in the inscuption coriespond, according to my calculations, with the following European dates

1 Sakka Rej year 441, Friday, 10th of Pyodola was Friday, 6th December A D 1079.
2 Sakka Haj year 448, Sunday, 8th of Tachung Mangla was Sunday, 18th Ootober AD 1096

XIX.-NEWAR ERA.

$-0=$
The Newal era is peculiar to Nepal, where it was introduced in A.D 880 by Raja Räghava Deva Pandit Bhagwan Lal Indarji has published several insciptions dated in this era. The earliest date is $\$ 533$, or AD 1413, of Raya Jyotı Malla, who may be the Jestih Mall of Pinnep's List The next is one of Siddhi Nri-Sinha, dated in S 757, or A.D. 1637. This Prince must be the Siduhe Nara Sinha of Pinsep's List, whose reign is assigned to A.D 1654-l685 But this inscaption places him at least seventeen years earliel He was the grandson of Jayakusa Malla by lis daughter, to whom was left the district of Pitan A third and a fourth inscription furnish another correction These are records of Pratapa Malla of Kathmindu, dated in S 769 and 778, or AD 1649 and 1658, whuch serve to place this Raja seven yeais earlier than in Prinsep's List

Prinsep obtained his information fom Dr Bramley, who was Residency Surgeou in Nepal The year begins in October, and 951 years had expired in 1831. The Newar era is used upon the coins of the Newari Rajas of Bhatgaon, Kethmándu, and Patan Maraden has publiahed coins of Jaya Prakasa Malla II. of Kathmandu, dated in 8. 819 and 828, or A.D. 1699 and 1703, which agree with the dates of 1606 and 1706 given in Prinsep's List This ern was discarded in A.D. 1768 by the Gorkhe conqueror Prithi NArtyank SAh, who introuluced the use of the Saka era, which is still placed on all the coins of Nepal.

XX.-CHÂlukya Era.

In the Châlukya insciptions the dates are generally recorded in the Sâka era But in the year Nula of the Jovian cycle of 60 years, or AD 1076,* the Châlukya king Vikramâdtrya Tribluvana Malla estabhished a new era called the Chalukya Vikrama Varsha From his own jnscription we leain that he set asside "the ancient Sakn, and established the Vikrama Saka in his own name " \dagger He relgned for fifty-one years from Saka 998 to 1049 His era dates from his accession in Saka 998, or AD 1076 He was one of the most powetful of the Châlukya kıngs, and his era seems to lave been adopted by some of the neighbouring princes Thus the Kadamba king Tailapa Deva dates one of his inscriptions on " Monday, the full moon day called Herjuggi (or Aswina) of the Sarvadharı Samvatsara, which was the thinty-third year of the glornous Chalukya Vikiama Varsha" Sarvadhầi, the twenty-second year of the cycle, fell in A D 1108 in Southern India, and as it was the thirtythird yeat of the new Chalukayuera, the first year must have fallon in $1108-32=1076 \mathrm{AD}$

After the death of Vikrama in AD 1127 the power of the Chalukyas began rapidly to decline, and in Saka 1084, or A.D 1162, their throne was seized by Vijala Kalâchuri, after whach therr era would seem to have fallen into diguse

[^42]
XXI.-ERA OF LAKSHMANA SENA.

The earliest notice of this era by name occurs in an inscription fiom Buddha Gaya published by James Pinnsep, in which the date is thus given

Srı Mat Lakshmana Sersa Deva pâdânam--atitn rôjge Sain 74, Vaısâhhr badı 12, Guran

"'The reign of Sı Mad Lakshmana Sena Deva having passed," or as Babu Râjendia Lala tianslates it-
"After the expıution of the retgn of the auspicious Lakshmana Sena Deva"

This eia, therefore, was established on the death of Lakshmana Sena, the son of Ballâla Sena, Râja of Belıgal It is still used in Tirhut and Mithila in almanacs, but alwayy along with the better known eras cither of Vikiama ol Sâka Unfortunately the people, who thus use it, know nothing about it, and the equivalent dates give slightly varying results I believe, however, that I have succeeded in clearing up the difference I number the following atatements for easy reference hereafter -

1 The earliest mention of the era 14 by Colebrooke, who speaks of "Lakslimana Sena as a renowned monarch who gave his name to an era of whach 692 years are expued" The Preface containing this statement is dated 17 th December 1796 the year in which this era was established must have been AD 1104, and AD 1105 would have been the year 1 expired
2. The next mention is by Buchanan, who says that, according to the almanacs of Mithila, AD 1810 was the 706th year of the era of Lakshmana Sena, which, as he remarks, places its beginning in A D 1104 †

3 In another place, however, he gives a slightly different statement as follows "In Mithila the year is lunar ($\imath e$ luni-solar) and commences

[^43]on the first day after the full moon of Ashâdha Here they say that Sak was the same as Sâhvâhan, and this year 1810 is leckoned the 1732nd year of his eia It is also the 1866 th year of Samvat, who, according to them, 19 the same with Vikram In these two points they agree with the Brahmans of the South, and differ totally from those of Bengal They have still another e1a called after Lakshman, king of Gaur, and of which this is the 705th year"

4 Babu Rájendıa Lâla mentions the Sccluhtıkarvamrita as bearing the two dates of Saka 1127 and Lakshmana Sena era $2 a s a+$ cha $+n 2 n 8 a$ * The book was written by Sudihaia Dâsa, son of Vatsa Dâsa, a general under Lakshmana Sena The words expressing the date ale unfortunately defective

5 Babu Rajendra also notes that the Dânr, Saguna was written in Saka 1019, or AD 1097, by Halâyudia, the spuntual adviser of Lakshmana Sena \dagger Imention this for two reasons 1 st, because it shows that Lakshmana Sena I wa, rergmong irfore A D 110 , when the era was established, and $2 n d$, because the Lakshinana must be a different prince fiom the Lakshmana of No 4, who can only lave been Lakshmana Sena II, or Lakshmaniya

6 A coppet-plate insciption of Siva Sinha Deva, Raja of Tirhut, gives the followng dates - "Lalshmuna Sumvat 293, Srávana-Sudı 7, Guzau," coupled with "Salue 1321, and Samvet 1455" The Saka date is equivalent to A.D 1399, but the Vikrama dato of 1435 gives A.D 1398 The dufference between the two dates is only 134 years unstead of 135 This difference was also noticed by Buchanan, who states that Kamalakanta, the most learned Brahman in the Rangpur district, made the Samvat era begin 134 years before that of Saka \ddagger In the Mithila district he found the same, as he notes (see No 2) that the year 1810 AD was reckoned as Sake 1732 and Samrat 1866, withonly 134 years' difference As the Sake date is the correct one, I have adopted it in preference to the Samvat date, which is but little used in Bengal. But the best proof of its accuracy is the fact that it aglees with the week day mentioned in the copper-plate The dates ale Thursday the 7th Sravana-Sudi, 1321 Sake, o1 AD 1399 As the proof of thas is very ample, I give it here as another example of the geneial accuracy of the

[^44]tables for working out any luni-solar date Sake $1321=$ Kali-Yuga $4500-$

Lnni solar year beging 196626 days earlier
and as Sravana-Sud. 7th is the 125th day of the year, it fell on Thursday, 10th July 1399, O S

7 There is another inscription dated in the era of Lakshmana Sena, which also gives the week day Prinsep read it as Sam 74,* which would be equivalent to A.D 1180 and Kâli-Yuga 4281 This is the inscription referred to in the beginning of this account as being dated from the close of the reign of Lakshmana Sena But taking Prinsep's reading of the year as $S 74$, my calculation shows that the week day does not agree with Thurrsday, Versâkha-Badı 12

8 I possess a third insciption dated in Sri Mal Lakshmana Senasydtata rajye Sam 51 "In the year 51 after the close of the reign of SrıLakshmana Sena" Then follow some letters and figures which, no doubt, give the month and the day, but I have not yet been able to read them

In noticing the almanacs of Mithila, which mention this era, I have said that the equivalent dates give slightly varying results. This is even the case with the two notices of Buchanan, who in one plece gives the year 705 of the Lakshmana era as the equivalent of A.D. 1810, and in the second place, 706
9. Babu Rajendra Lêla Mitra has collected several instances of the use of this era by the people of Tirhut \dagger He quotes Babu Rajakrishna Mukarji as having brought to notice the fact that it was still current

[^45]in Tirhut, and that A D 1874 was the year 767 of the Lakshmava era. Deducting 766 fiom each number we get AD 1108 as the year 1 of the era

I also obtaned several equivalent dates from some manuscript Tirhut almanacs in the possession of Pandit Babu Lal of Darbhanga

10 The oldest of these was dated in Saka 1698, and Lakshmana Sam 669, aud Vikiaina Sam 1833, equivalent to A D 1776 Deducting 668 we get A D $1108=$ the year 1 of the Lakshmana ena

11 A second almanac, dated in Lakshmana Samvat 732, gave the equivalent dates of Sake 1762, and Vikiama Samvat 1897, both corresponding with AD 1840 Deducting 731 we get AD $1109=$ the year 1 of the Lakshmana eza

12 A third almanac, dated in Lakshmana Samvat 773, gavo Saka 1802 as the equivalent coiresponding with A D 1880 Delucting 779, we get $1108=$ the year 1 of the eia

13 A fourth almanac, dated in Lakshmana Samvat 730, gave Vikrama Samvat 1895 coiresponding with A D 1838 Deducting 729 we get 1100 A.D. $=$ the yeas 1 of the era

On comparing the dates derived from the almanacs, it will be seen that not only do they diffel amongst themselves, but theie is not one of them that agrees with the date derived from the coppet-plate inscription, which places the year 1 of the ena nin AD 1107 These van ious dates are as follow -

N	1	Colebrooke	A D	$1796=692$	Ls	or	ΔD	$1105=1$
"	2	Buohanan	"	1810-708	"	or	"	$1105=1$
"	8	Do	"	$1810=705$	"	or	"	$1106=1$
"	6	Copper-plate	"	$1399=293$	"	or	"	$1107=1$
"	θ	Almaneo	"	1874 $=787$		or	"	$1108=1$
"	10	Do	"	1776-868	"	or	"	1108-1
"	12	Do	,	$1880=778$	"	$0^{\text {r }}$	"	$1108=1$
,	11	Do	"	$1840=732$		or	"	$1109=1$
"	19	Do.	"	$1838=730$	"	or	"	1109 - 1

The differences are not very great, but in dealing with the establishment of an era, the strictest accuracy is mperatively necessary. What may be the cause of these differences I can only guess at. I notice that Buchanan refers the beginning of the year to the full moon of Ashadha.* But I was informed in Tirhut that the Lakshmana Samvat
begons with 1st Mâgha-Badi, while both the Vikrama and Saka jears begin with the lst Chaitia-Sud, Babu Rêjendia also etates that the Lakshmana year is a luni-solar one, "commencing fiom the 1st of the month of Mâgha," that is, Magh-Badı 1, ol middle of January

Before closing this account I must notice a veny semous error into which Babu Rajendra has fallen about Lakshmana Sena himself After having translated the Buddha Gaya insciption dated in S 74, which declaree that the ela of Lakshmana Sena began "after the expiration" of his reign, he on the very next page makes the era date from the beginning of his reign * Thus he says, " Beginning with (A.D) 1106 Lakshmana had a very prosperous reign of many years" And again he says, "A peilod of 30 years would not be too much and Lakshmana's reign may very farrly be assumed to have extended to the close of the fourtl decade of the 12th Century" So that the year 1706 AD was both the beginning and the end of Lakshmana's reign Agann on page 402, in lis list of the Sena Rajas, he gives AD 1106 as the beginning of Lakshinana's renga Lastly, an page 397, in speakung of the Tarpondighi inscription, which is dated in the 7th year of Lakshmana's own reign, he notes that no attempt had been made to trace the initial date of the era.

How the learned Babu came to the conclusion that the year AD 1106 was the beginning of Lakshmana Sena's reign I cannot even guess He himself publishes the notice that the Dana-Sdgara was written in Saka 1019, AD 1097, by Halâyudha, the spirıtual adviser of Lakshmana Sena This alone is eufficient to establish the fact that Lakshmana Sena was reigning at least nine years before the adoption of his era But there $1 s$ another fact recorded by one of the earlest Muhammadan historians, Minhaj-ue-Siraj, which pointe very clearly to an earlier period for the lelgn of Lakshmana Sena Tins is the statement that Lakshmaniya, the last Hindu king of Gaur, had reigned for 80 years previous to the conqueet of Bengal by Bakbtiyai Khaljı in A.D 1195

[^46]
XXII.-SIVA-SINGHA SAMVAT

— 0 -
This ern is known ouly from its mention in Colonel Tod's inscription from Balabhi From the discussion on the date of this inscruption in my account of the Balabhi era, it will be seen that its imitial point corrosponds with AD 1114 It seems probable that it may refor to the expulsion of the Jama Rajay fiom the Penmsula ot Gujaiat

XXIII.-FASLI ERA OF BENGAL.

The Fasla Eia owes its origin to Akbai's love of innovation It should properly be dated from the time of his own accession, or the 2nd of Rabi-us-Sânı in the Hıjra year 963, or 14th February 1556, but the actual solar reckoning of the Fash system in Bengal begins with the 1st Vasâkh of the Hindu solar year, on Saturday the 28th March, OS , or Saturday the 6th Apnl, NS * In the account published by James Pinsep, the different reckonings of the Fash caleudar in various parts of India are all noticed It is altogether a mongrel era, the first 963 years being putely lunar ones of the Hyra Calendar, after which the years are purely solar ones, the Bengah sanh beginuing with the lst of the Hındu Vaisâkh, the Fash of Northern India with the lst of the lunar Aswina, and the Vilayati with the lst of the solar Aswina

There is also a later Fasli era in the Dakhin, which was established by Shah Jahân in A.D 1636 or at 1046 The beginning of the year has been fixed by the Madias Government to the 12th of July

[^47]
XXIV. - ILÂHI ERA

- 0

The Tấzlh Ilalız, or "Ilâhıı Era," was estabhshed by Akbar so late as the 30 th year of his reign in AH 992, oi AD 1584 The coustly Abul Fazl says, that it was established "in older to remove the perplexity that a variety of dates unavordably occasions He dislaked the woid Hijza (floght), but was at finst apprehensive of offending ignorant men, who superstitiously imagined that this era and the Muhammadan fath wele inseparable" "Amir Fateh-Ullah Shirkzi corrected the calendar fiom the tables of Ulugh Beg, making this era to begin with His Mirjesty's reign, and contemplatning the charactel of the monarch, named it Tauhl Ilaiki, or the Mighty Era.' "The years and months are both natural solar, without any intercalations The names of the months and days conespond with the ancient Persian The montlis are from 29 to 30 days each Tbere 18 not any week in the Persian month, (the) 30 days being distingushed by different namea, and in those months whin have 32 days, the last two are named Roz-o-Shab (day and mght), and n older to distangunh ono from the other ane called first and second"

The Ilahi era dates from Akbar's accession to the throne, which, accoldrig to the Tabakatt-i-Akbarı, was Friday the 2nd of Rabi-us-Sani, A.H 963, or 15 th Februaly $15 \div 6,0 \mathbf{S}^{*}$ It was employed extensively, though not exclusively, on the coins of Akbar and Jahangir, and appears to have fallen into disuse eally in the reign of Shah Jahan Marsdon has published a coin of this king witl the date of Snnh 5 Ilâh, coupled with the Hıjra date of 1041 But in this case the Ilâhı date would appear to be only tho jalus, on year of the king's reign \dagger

In the account quoted auove fiom Abul Fazl, which Prinsep has also copied, the lengths of the months are snid to be "from 29 to 30 days each," but in the old Persian Calendar of Yazdajırd, they were

[^48]30 days each, the same as amongst the Parsis of the present day The names of the twelve months, all of which are found on the coms, are as follows -

1 -Farwardin
2-Ardi-behight
3 -Khurdâd
4-Tir

6-Mirdâd
6-Sbiriur
7 -Mhir
$8-A b E n$

$$
\begin{aligned}
& 9 \text {-Ader } \\
& 10 \text {-Da } \\
& 11 \text {-Bahman } \\
& 12 \text {-Isfandarmas }
\end{aligned}
$$

The Ilâhieia, as well as the old Persian ela, had a different name for each of the 30 days of the month-

Days

1	Hormazd
2	Bahman
3	Ardi bebisht
4	Shatiur
6	Anpanial
6	Khurdaid
7	Amerdád
8.	Depàdar
9	Adur
10	Abȧn

The following 18 Abdul Kâdr's account of the establishment of this era * "The ela of the Hyra was now abolished, and a new era was introduced, of which the fist year was tho year of the Emperon's accession (963). The months had the same name ns at the time of the old Persian kings, and, as given in the Nigabufgibyan, fourteer festivals also were introduced comresponding to the feasts of the Zoronstuans, but the feasts of the Musalmans and then glory wele trodden down, the Fuday prayei alone being retained, because some old, decrepit, silly people used to go to it The new era was called Târıkhı Ilâhı, or 'Divine Era' On copper coins and gold-mohure the era of the Millenium was used, as mdicating that the end of the relygion of Muhammad, which was to last one thousand years, was drawing near"

I have read somewhere that in AF 992, when the Hyra millenary began to draw towards its close, and Alsbal was meditating the establıshment of the Ilâh era, one of his courthers stated openly that the elas even of the greatest kiags did not last beyond 1,000 years In proof of this he cited the extinction of some Hindu era, which was abolished at the end of 1,000 years

[^49]
xXV-Christinn era

— $0=$
The eia which has been adopterl ly all Chistian nations wicckoned from the supposed date of the buth of Chust, and has, therefone, been called Anno Domeme, on the "year of om Lanl" The era was first biought anto use Ly Dionybins Exiguus, a Reman Abbot, who fized the burth of Chist in the 4 jth yeal of the Julian ma, on A UC 753 of the Roman Calendar " Prevous to this, the Chustran \{"hurches had foi about a century dated foom the Diocletian era, or ven of Matris" The tiue date of the natinty is now adnutten to be furr yens callea, on in 4BC of the preacut Christian reckoning But the use of the Chistian era did not become general until AD 730, m the thme of Pope Giegoly If

The jear was the same as the Julian yean, and connsted of 365 . days, the fiaction beng amanged bv making thiee consmentue inasa of 365 days, and addmg a whol day to the 4th y ean But aiter the lapse of many centures it was discoreaed that this walue of the solar on suleieal year was too mucl. In A D 1582, when the amomint of cacese was ten days, the calendan was eonected by orinr of Pope Gsegciry XIII by staking out ten days in October from the 5th to the lith In Eingland the collection was not made until A D 1752 , when, the ellot having still fuither increased, eleven days wele stinck out fiom Sid to 14th September The true length of the yeai 1936.524210 days, lut for convemence it is made $365 \mathbf{2 4 2 5}$ days, on three days less than the Julan reekoning in 400 years This is effected by omiting the extin day in the thee odd hurdsed periods of four centuries Thus the yeas 1600 and 2000 are leap years, bat 1700,1800 and 1900, are common y ears

The accompanying tables for ascertaming the week day of any date eithen before or after Chust, and aceondug to either the Julian on Giegoian leckonmg, were piepaied by mygelt mose than twenty years ago Since then I have had ample oppoitunties of testing their useful-
uess in facilstating the very common operation of finding the week day of any given date According to my experience, their use is both more rapid and less troublesome than any otbens that I have tried Every week day is shown at once by simple inspection I have also invented the following short process for finding the initial day of any year of the Old Style or Julsan reckoning

Rule-Set down the date and add one-fourth, rejecting fractions. Deduct two years, if leap year, but only one year if an ordinary one. Divide by 7, and the remainder, counted from Sunday as 1 , will be the untial day of the year The following examplea will be sufficient. Both results agree with the table-

There is an old memorial verse, which is much used for ascertaining the initial day of each month when the mitial day of the year as known The capital letters are the Dominical letters showing the days of thei week, counting from Sunday as 1

At Dover Dwell George Bruce, Eequire, Good Chriatopher Fina, And Devid Frjer

Heic we see at once the mitial day of each month But as the same mav also be obtaned at once from an inspection of the table, the chief use of this memonal verse is when the table 18 not at hand

The tables themselves are so clear and simple that they scarcely require ary explanation But suppose it be required to find the week day of tho 20th October 1712 AD First look in Table III of the Juhran Calendar for the year 1700 AD, then run the eye down until it meets the horizontal line opposite of the year 12, and the intersection will show the initial day of the year 1712 as Tueaday Next look in Table II at top for the horizontal line of week days, beginning with Tuesday, which is the third one of the seven, and as 1712 was a leap year, look for the name of October in the night hand column. Then,
taking the 20th day of October, and running the eye upwaids until it meets the horizontal line of week days, of which Tuesday was the lst of Januaiy in that year, it will be seen that Monday was the 20th of October, as secorded at the head of the Spectator "Monday, October 20th, 1712."

As a second example let it be required to find the week day of the 7 th November 1752 after the Gregonsn reckoning or New Style had been adopted in Eugland First look in Table IV of the Gregorian Calendar for the initial day of AD 1752, which will be found to be Saturday Then with this as the first day of January look in Table II as before for the month of November and the seventh day, which will be Tuesday The Adventurer is dated "Tuesday, Nov 7th, 1752"

As a last example, I will take a atill earher date recorded by Bacon, " 1617, Feby 6th, Fuday" Here the date beang prior to the 25th March the true year was 1618, as now reckoned The mitial day in Juhan reckoning was Thursday, and the year being an ordmary one, the names of the months must be read from the left side of Table II, which gives Friday as the 6th February 1618.

XXVI.-SAURA-MANA;

On

SOLAR RECKONING

Tiforetically the Hindu golar year should begin with the sua's entrance into Alles, but owing to the greater length of the Hindu year, the 1st of Vasakh has gradually receded, so that the first day of the sola year now falls on the 12 th or 13 th of Apral The Indan computations were all made fiom the beginning of the Mahâ-Yuga, and owing to the difference in the length of the solar year as laid down by AiyaWhatta and Vaîha Milila, thele 19 ofton a disciepancy of one day in the beginung of the IIndin vea in the places which make use of then differont tables The actial diffience as, however, not sur uuch, being only about onc-thud of a day in $\mathbf{5 0 0 0}$ yeara Acemding to Wrisen tho number of day's assigned by Aryabhaten to a Mahà-Yuga of 4,320,000 yeas is $1,577917, j 00$ in the south of India, and 42 more in the MSS peserved an Beugal The fomer gives a year of 3652586805 daya, and the latter of $36 ; 2 ; 8692$ days* But the Suryn Siddhanta of Vaitha Mhana gives $1,577917,823$ days to the Malni-Yugn, which makes the yean sumewhat longer, o1 8052587564 days

As the number of 1 evolutions was complete at the begnining of the Kâh-Yuga, it is not necessary to go back, as the Hindu astronomery dn, to the begraning of the Maha-Yuga It will be suffiesent to begin the computation fiom the commemeeraent of the Kâli-Yuga itself In the accompanyang Tables, Nos XI, XII, and XIII, I have given the number of days elapsed from the beginning of the Kalh-Yuga down to K Y 5100, accoldug to both computations now in use, that of the Surya Siddhanta in Northern India and that of Alyabhatta in Southern Inda The fractions of days are given un the convement foim of decimals unstead of the thoublesome ghaits, palus, and vipalas of the native astronomers

As an example of the working of the Tables I will take the year A D 1857, to find on what day the 1st Vaisâkh fell According to the

[^50]Surya Siddhanta reckoning, the Kali-Yuga year 4958 (or $3101+1857$) began on the 11th of April, while Wairen's Tables also give the aame date. The process in both reckonings is as fullows.-

Surya Sudikdnta			Arya Biddhámta
Years		Days.	Deys.
4900	contain	$1789,767-9067$	1789,7678346
58	"	21,185 0078	21,184 9994
4958	contain	1810,9529148	1810,9625880
Deduot constent		-21475	-21475
		1810,450 7670	1810,950-3805

After atriking out the weeks by dividing both by 7, there remans 17 days over, and 13 days over
As the week days are counted fiom Friday, the first day following was Saturday, which in the year 1851 A.D was the 11th of April Should the laige fiaction of 767 of a day be reckoned as a whole day, then the iuitial day of the solar year in Northern India would be Suuday, 12 th April 1857, and this I find 2 s the actual date given for Bengal in the Calcutta Gazetteer of that year

The initial day of the year having been fixed, it 28 a very sample process to tind uny particular day of a given month, by an inspection of the Table of solar months, with the collective number of days for the whole year The months themsolves are of varyiug lengths wath broken periods, but for the caleudar they ano made to consist of whole numbers Then suppose it be required to find the day of the Christian year corresponding with the l0th of Kaitika of the solar year 4958, KahYuga, a reference to the Table will show that the day required 28 the 197 th day of the year, which is to be reckoned from the 12 th of Apul as the first day A reference to the Christian Table of days shows that the 12th of April is the 71st day, to which adding 196, we get the 267th day of the Christian year, or the 22nd of November 1857.

XXVII.-CHANDRA-MÂNA.

— $0=$
The Chandra-Mana, or luni-solar calendar of the Hindus, is a much more elaborate syetem of reckoning The object of the ChandraMana is to combine the solar and lunar reckomings, so that the years may be reckoned by the course of the sun, while the months are regulated by the revolutions of the moon For this purpose a cycle of 19 solar years was adopted, as being equal, or nearly so, to 235 lunations or revolutions of the moon of 295306 days The periods do not quite tally, as 19 solar years are equal to 69399163 days according to Varaha Muhira, and 69399149 days according to Ary abhatta, while 235 lunations are equivalent to only 69396910 days The difference is nearly onefourth of a day in 19 years

The year consists of 12 lunar months of 30 and 29 days alternately, making altogether 354 days The deficieucy of eleven days less than the solar year, as made good by the addition of seven intercalary months an each cycle of 19 years. which are inserted in the
3rd, 5th, 8th, 11th, 14th, 16th, 19th years.

As these intercalary months also consist of 30 or 29 days, the cyele of 19 years is thus made to consist of $19 \times 12=228+7=285$ lunations. The Hindu luni-solar year, therefore, agrees very closely with the Greek cycle of Meton, which also consisted of 19 solar years, or 235 lunations The seven intercalary months of Meton were inserted in the following years

$$
3, \quad 5,8,11,13,16,19
$$

The only difference between this ariangement and that of the Hindu series is in the 5 th intercalation, which was made in the 14 th unstead of in the 13th year But in spite of this close agreement, I
think it almost certain that the two cycles were independently developed, although they may perhaps have had a common origin The difference in the mode of intercalation is so great that it seems quite impossible that one can have been borrowed from the other In the Greek cycle, the intercalary month has a fixed position, while in the Indian cycle both the name and the position are constantly changing The name of the intercalary month is determined in the following manner-." When two new moons fall within the same solar month, as for instance on the list and 30th of Chaitra, then the name of Chaitra, or the corresponding lunar month, 18 repeated, the year being then intercalary with 13 months The extra month is called adhika (or added), and the other nuja (or ordinary). By the rule of the Surya Siddhanta, the intercalated month is to be placed in the middle of the ordinary month In Southern India the whole intercalary month is placed before the ordinery one

The common rule followed for intercalation is thus given by W arren. When the luni-solar year begins-

On the lat of the solar Chaitra, then Chatra will beinteroalary		
On the 2nd or 3rd	Vausikn	$"$
On the 4th or 5th	Jyeshtha	$"$
On the 8th, 7th, or 8th	Sravana	$"$
On the 9th or 10th	Bharapad	$"$

"It happens ance within each term of 160 years that there is no new moon in one of the last six lunar months, which from the sun being in perigee contain only 30 and 29 days each" "To obriate this, that month is expunged, while two others for the opposite cause are repeated. This double intercalary year wath its expunged month is called Kshaya Samvat-sara."

In the General Table, which gives the names of the intercalary and expunged months, I have adopted the calendar published by Cowasjee Patell. The initial days of the years I have calculated myself throughout up to A D 540 The early calculations have been made with the solar reckoning of Aiyabhatta but from 541 down to the end, according to the solar reckoning of Varaha Mihira Cowasjee Pateil's Tables are calculated accordug to Aryabhatta, whose reckoning is still used in Southern Indıa

As the luni-solar year begins with the new moon immediately preceding the 1st of the solar Faisakh, the first step to be determined is the number of anys by which the one precedes the other. For this purpow the beginang of the solar year has to be fixad, as alrearly shown
in the account of the Saura-Mana, using the Solar Ahargana of the Surye Siddhannta for the North Indian dates and Aryabhatta's Solar Ahargana for South Indian dates. The next step is to find the number of days of the luni-solar Ahargana in the given period, and to deduct this total from the number of days of the Solar Ahargana already found. The remainder is to be reduced by continued subtraction of whole lunations, untrl the last remainder 18 less than one lunation. Then that last remainder shows the exact number of days by which the new moon precedes the lst day of the Solar Vaiselkh.

As an example of the process I will take the date of Kali-Yuga 4958. or A D 1857, of which the initial days have already been found in my account of the Saura-Mâna or solar reckoning As the LumiSolar Ahargana of the Surya Sidihânta is used in the South as well as in the North, one process will be sufficient-

The new moon, therefore, precedes the beginning of the solar year by 1699 , or 17 days Theu as the 1st of the Solar Varsalkh fell on the 11th of April 1857 in North India, the new moon will have fallen on the 24th Murch, and the beginnung of the luni-solar year, or the lst Chaitra-Sudu, on the followng day or 25th March In Southern Indaa it would have been the same according to my reckoning from Aryabhatta's length of the solar year, and this also is the day given by Warren But accordngg to Cowasjee Patell, it was the 26th March.

I have tested these Tables for several dates at distant intervals and have found them correct-

1 On the 5th February B C 21 there was an eclipse visible in India By the Tables the first day of the solar year was Wednesday,

14th March, and the first day of the Mun-solar year was Tuerday the 6th March, fiom which date counting backwards $29 \frac{1}{2}$ days for the provious conjunction of the sun and moon, we get the $\mathbf{3}$ th February

2 In AD 314, on the 3rd of Mach, there was a grand eclipse of the sun visible over E Asia. Accordung to Cowasjee Patell, the first day of the luni-solar year AD. 314 was the 3rd of March

3 In A D 490, on the 7th March, there was an echpse of the sun vistble ovel S E. Asia Accordug to Cownajee Patell, the fist day of the luni-solar year was the 8th March, which is ught according to the rule that the first day of the new year is the day after the conjunction.

4 On the 4th March 1840, I saw an eclupse of the sun in N. India According to Cowasjee Patell, and also according to my own reckonng, the luni-solar year began on the 3rd April 1840, which 18 exactly one comjunction later

5 In my account of the Bârhaspatya-Mâta, I have given another example of the correct working of the Tables for an eclipye of the yoar 792 A.L , which is mentioned in oue of the Indian inscriptions

6 But perhaps the most striking illustration of the geneial accurncy of the Tables 18 the echpse of the moon, which 19 reconded to have happened in the month of Srâvana Samvat 1200 The msciption in whels this is found is one of "three grants of land found at UJjayaur," un which Colebrooke makes the following remarks *
"One of three grants or patents records a donation of land made by the reigning sovereign of Dharit, on the anniversary of the death of lus father and predecessor, in 1191 of the Samvat era, confirmed by the prince, his son, at the time of an eclipse of the moon in Srâvana 1200 Samvat It appears from calculation that a lumar eclupse did occur at the time- $v z z$, on the 16 th of July AD 1144, about $9 \frac{1}{2} \mathrm{PM}$, apparent time at Uyayan "

Now it is quite true, as Colebrooke says, that an eclipse of the moon did occur on the 16th July 1144, but that day wns cettanly not the full moon of Sievana in that year The true date was the 28th

[^51]July 1143, on which day was the full moon of Sravana, and also a lunar eclipse The following is the calculation according to the Tables Samvat year $1200+3044=4244$ Kall-Yuga $=$ A D 1143

Deduct constant 21475

In the North the luni-solar year begins with the new moon, or 1st day of Chaitra-Sudi, and as this is the latter half of the month, this Hindu year has the strange anomaly of beginning in the middle of a month The first half of Chaitra, or the period of the waning moon, called Badr, or Kmshna Paksha, belongs to the past year This mode of placing the Badu, or waning half of the moon, in the beginning of the month 18 known as the Krishnadr reckoming, while the opposite practice of putting the Sudl, or Sulcla Paksha, half of the moon, as the beginning of the month, $1 s$ known as the Sukladr reckoning. The names $B_{a d \imath}$ and Sudi are contractions of bakula-palesha-dına, the "day of the daik half," and suhla-paksha-duna, the "day of the bright half," the fist and last syllables only being retained

Table X shows the number of days in the Hindu lum-solar yean when not intercalary When the year is an intercalary one, and the day required falls later than the intercalary month, then 30 days must be added to the number given ir the Table

The years of intercalation being fixed by the rules laid down for the 10-year cycle, the name of the intercalated month has yat to be found As there are 30 days in six of the lunar months, while the time of one lunation is only $29 \frac{1}{2}$ days, it would of course occasionally happen that two new moons would fall in the same month, one at the beginning, and the other at the end But as this is not allowed, a
peculiar arrangement has been adopted for avoiding it. In whatever month two new moons would naturally fall, that month is doubled ; or, in other words, an intercalary month of the same name is added called Adinka Vaibakha, Adhika Srîana, \&e

To ascertain which month will be Adhika, or intercalary, Warron's Kala Sankalita should be consulted, and alyo the brief abstract given by Prinsep The process is troublesome, and in the present work I have adopted the names of the intercalary months as given by Cowasyn Patell The years of the intercalations are shown to be correct by the shifting of the initial days backwaids and forwards, all of which I hasye myself calculated

TABLE I.
CHRISTIANCALENDAR.
Week Days for one year

COMMOV Years the Months are to be read on this side	S Mon Tu Wed Thu Frd Sat	Mo Tu W Th 「r Sa s	Tu W Th Fr Sat \mathbf{S} Mo	>W Th Fr Sat \mathbf{S} Mo Tu	Th Fr Sat 8 Mo Tu W	$\begin{gathered} \hline \mathrm{Fr} \\ \mathrm{Sat} \\ \mathbf{S} \\ \mathrm{Mo} \\ \mathrm{Tu} \\ \mathrm{~W} \\ \mathrm{Th} \end{gathered}$	Sat \mathbf{S} $\mathbf{M o}$ $\mathbf{T n}$ W Th $\mathbf{F r}$	LEAP YEARS the Monthe aro to be read on this anda
JANUARY OCTOBER	1	2	3	4	5	6	7	JAVtARY
		9	10	11	12	13		
	13	16	17	18	19	20	21	APRIL
	22	23	24	26	26	27	28	JULY
	-9	30	31		2			
FEBRUARY				1		8	4	
	5	6	7	8	9	10		FEBRUARY
MaRCH	12	13	14	15	16	17	18	AUGUST
NOVCMBER	19	20	21	22	23	24	25	
	26	27	28	29	30	31		-
APRIL	2	3	4	5	6	7	1	SEPTEMBГに DECETBLI
JULY	9	10	11	12	20	$\begin{aligned} & 14 \\ & 21 \end{aligned}$	1522	
	16	17	18	19				
	23	24	25	26	27	28	29	
	30	31						\square
			1		3	4	5	
Adrust	6	7	8	9	10	11	12	MAY
	13	14	15	16	17	18	19	
	20	21	22	23	44	25	20	
	27	28	29	30	31			\cdots
					,	1	2	
SLPTEMBLR	3	4	5	6	7	8	9	JU\L
	10	11	12	13	14	15	36	
DLCLMBLR	17	18	19	20	1228	22	23	
		$2 \overline{5}$	26	27		29	30	
	31							\cdots
		1	2	3	4	5	6	
	7	8	9	10	11	12	17	
MAY	14	15	16	17	14	19	$\stackrel{\sim}{2}$	OCTOBER
	21	22	23	21	25	26	27	
	28	29	30	31				-
							3	
JUNE	4	5	6					MARCH
	11	12	13	14	15		17	
	18	19	20	21	22	23 30	24	NOVEMHER
	25	26	27	28	29	30	31	

TABLE II.

JULIAN CALENDAR.

christian cemturies B. C.
A D. cheistiay ceitiuerss
E. C
B. 0

L \mathbf{Y}
L. \mathbf{Y}
L. Y
L. \mathbf{Y}.

L \mathbf{Y}
C. \mathbf{Y}
L. \mathbf{Y}

TABLE III
GREGORIAN CALEMDAR.
ombitiai cemturies BC.
A. D. chrigtial cempurim

N. B-The rultial day of each even eentury, $400 \mathrm{s00}$, ko., 3n Saturdny, that of the odd

TABLE IV．
Number of Days in the CHRISTIAN Year

$\begin{aligned} & \text { 옹 } \\ & \text { 品苞 } \end{aligned}$			蔍	$\begin{aligned} & \vec{A} \\ & \text { 4 } \end{aligned}$	sex	号	\vec{B}	4 者 4 4	$\begin{aligned} & \text { 若 } \\ & \text { 首 } \\ & \frac{8}{8} \\ & 8 \end{aligned}$			宮
1	1	32	60	91	121	102	182	213	244	274	305	335
2	2	31	61	92	122	153	183	214	245	275	306	386
3	3	34	62	93	123	154	184	215	246	276	307	337
4	4	35	63	94	124	155	185	216	247	277	308	338
5	5	36	64	93	125	156	186	217	248	278	309	838
6	6	37	65	96	120	157	187	218	242	279	310	340
7	7	38	66	97	127	158	188	219	250	280	311	341
8	8	38	67	98	128	159	189	220	251	281	312	342
9	9	40	68	99	129	160	190	221	252	282	313	343
10	10	41	69	100	130	161	191	222	233	283	314	344
11	11	42	70	101	191	162	192	223	254	284	31.5	345
12	12	43	71	102	132	163	193	224	255	285	316	346
13	13	44	72	103	133	164	194	225	256	286	317	347
14	14	45	73	104	134	165	195	226	257	287	318	348
15	16	46	74	105	175	166	196	227	258	285	319	349
16	16	47	75	100	136	167	197	228	259	289	320	350
17	17	48	76	107	137	168	198	220	260	290	321	351
18	18	49	77	108	188	169	199	230	261	291	322	352
19	19	50	78	109	139	170	200	231	262	292	323	353
20	20	51	79	110	140	171	201	232	268	293	321	ง54
21	21	62	80	111	141	172	202	233	264	294	325	358
22	22	63	81	112	142	173	203	234	265	295	326	356
23	23	54	82	113	143	174	204	235	206	296	327	357
24	24	55	83	114	144	175	205	236	267	297	328	858
25	25	56	84	115	145	176	206	237	268	298	829	339
26	26	57	85	116	146	177	207	238	238	298	330	300
27	27	58	86	117	147	178	208	239	270	300	331	361
28	28	89	87	118	148	179	208	240	271	301	332	362
20	29		88	118	149	180	210	241	272	302	333	868
30	30		89	120	150	181	211	242	273	803	834	864
31	81	－	90	－	151		212	243		504	，	865

TABLE ∇.
ATTIC CALENDAR
Omatted dnys on the Macedonten rycle of 19 wears

TABLE VI

INITIAL DATES

Of tom Attic and Macelonzan Cycles of Meton preceding the Era of the Seleukuda.

The 7th Atho Jear of Maton's Cycle onded at Midsummer, 810 B. 0

Intual Days-CYCLE OF METON

$\left[\begin{array}{l} \text { Dass } \\ \text { no } \\ \text { Year } \end{array}\right.$	$\left.\left\lvert\, \begin{array}{c} \text { Year } \\ \text { in } \\ \text { Cycle } \end{array}\right.\right\}$	$\frac{\mathrm{An}}{\mathrm{Sel}}$	$\begin{gathered} \mathrm{I} \\ \text { CYCLE. } \end{gathered}$ B C		$\begin{gathered} \text { II } \\ \text { CYCLE } \end{gathered}$ в \mathbf{c}	$\begin{array}{\|c\|} \mathrm{An} \\ \text { Sel } \end{array}$	III cycter B C		$$	$\underset{\text { cel }}{\text { An }}$	$\stackrel{v}{\text { CYCLE }}$	Sn	vI cycle. B \mathbf{c}		$\begin{aligned} & \text { VIII } \\ & \text { CYCLE } \\ & \text { B C } \end{aligned}$
$\left\lvert\, \begin{array}{\|c} \text { Days } \\ 355 \end{array}\right.$		3	3 Oct	22	13 Oct 291	41	13 Oct 272	co	13 Oct *253	79	234		14Oct 213	117	140ct 196
354		4	$20 \mathrm{ct} * 303$	23	3 Oct 290	42	$3{ }^{3} \mathrm{ct} 271$	61	$130 \mathrm{cts} 2 \mathrm{z}^{2}$	80	3 Oct *233		4 Oct 214	18	4 Oct 195
38	E	5	21 Sep 308	24	21 Sep *289	43	22 Sep 270	62	22 Sep 231	81	22 Sep 232		\| 22 Sep *213	119	23 Sep 194
35t		6	10 Oct	25	10 Oct 288	44	6	63	11 Oct 209	82	11 Oct 231	101	1110 Ot 212	120	11 Oct *193
384		7	29 Sep 306	20	29 Sep 287	45	29 Sep 269	$6 \pm$	' 29 Sep *249	63	${ }^{3} \mathrm{SCp} 230$	102	30 Sep 211	121	30 Sep 192
354		8	17 Oct *305	27	18 Oct 286	46	18 Ort 267	65	15 Oet 24	sq	18 Oct *239	103	19 Oct 210	122	19 Oct 191
30.5	vi	9	6 Oct 304	28	6 Oct ${ }^{\text {288 }}$	47	70 ct 266	${ }_{6} 6$	\% Oct 24	8	7 Oct 228	104	4, i Oct ${ }^{209}$	123	8 Oct 190
${ }^{884}$	E viu	10	${ }^{29}$ Sep 30.1	29	26 Sep 284	48	$20 \mathrm{Sep}{ }^{265}$)	6	27 Sep 240	s6	$2{ }^{2} \mathrm{Sep} 227$		27 Sep 208	124	$27 \mathrm{Sep}{ }^{189}$
954		11	15 Oct 302	30	1500 t 283	49	$1{ }^{15} 0 \mathrm{ct} 26 t$	cs	150ct *2t;	87	16 Oct 221	100	0 1bOLt 207	126	16 Oct 188
3		12	ct *30	31	+ Oct 282	50	\pm Oct 21	69	4 Oct 24	25	4 Oct *22is		5 Oct 200	126	5 Oct 187
${ }^{8} 85$		13	22 Sep 300	32	22 Sep *281	51	23 Sep 202	i0	2 S Sep $2+3$	83	23 Sco 234	103	8 23 -ep *205	127	24 Sep 156
354		14	12 Oct 299	33	12 Oct 280	62	12 Oct *201	7	13 Oct 242	90	13 Oct 223	109	$\left.\right\|^{13}$ Oct 204	128	13 Oct * 185
384	E \times	18	1 Oct 298	34	1 Oct 279	53	Out	i2	1 Oct *241	91	2 Oet 222	110	2 Oct 203	129	2 Oct 184
351		16	19 Oct ${ }^{297}$	35	20 Oct 278	$5 \pm$	20 Oct	7	20 Oct 240	2	$\left.\right\|^{20}$ Oct *231		21 Oct 202		21 Oct 183
4		14	8 Oct 296	36	8 Oct *277	35	90 ct 258	is	9 Oct 219	93	9 Oct 220	112	2 -9ut *201	131	10 Oct 182
984	E	15	27 Sep 295	37	27 Sep 276	56	${ }^{27}$ Sep * ${ }^{\text {2 }} \mathbf{5} 7$	75	28 Sep 238	94	${ }^{28}$ Sep 219	13	328 Sep 200	132	28 Sep *181
85t		19	16 Oct 294	38	16 Oct 275	57	256	76	16 Oct *237	95	17 Oct 218	114	17 Oct 193	133	17 Oct 180
38	${ }^{\text {x }} \mathbf{1}$	20	4 Oct *293	39	5 Oct 274	58	5 Out 2ja	7	5 Oct 236	96	5 Oct *217	115	6 Ott 198	134	6 Oct 179
98	E	21	24 Sep 292	40	25 Sep 2	59	25 Sep 254	78	25 Sep 235	97	23 Sep 216	116	6 6 26 Sep ${ }^{19} 97$	135	26 Sep 178

[^52]TABLE VII.-(Contd)
SELEUKIDANERA. Intial Days-CYCLE OF METON

$\left\{\begin{array}{l} \text { Days } \\ \text { hat } \\ \text { car } \end{array}\right\}$	$\begin{gathered} \text { Years } \\ \text { of } \\ \text { Cycle. } \end{gathered}$	An Sul	VIII CYCLE	$\begin{aligned} & \text { An } C \\ & \text { Sel } \end{aligned}$	$1 \times$ CYCLE B C	$\begin{aligned} & \mathrm{Ann}^{\mathrm{C}} \\ & \mathrm{Sul} \end{aligned}$	$\underset{\text { CYCLE }}{\mathrm{X}}$		XI cycle B C		XII cycle		$\begin{array}{ccc} \substack{\text { XIIII } \\ \text { CYCLE }} & \\ & \text { B C } \end{array}$	${ }_{\text {An }}^{\text {And }}$	x 1 y cycle B C	
Das																
355		136	140 t * 17 T	153	150 ct 1 13	174	$1500{ }^{139}$	194	; Oct 120	212	$150 \mathrm{ct}{ }^{\prime} 101$	231	Oct 82	250	16 Oct 63	
S54		137	Ot 176	150	4 Out 1177	175	${ }^{5} \mathrm{O}$ Ot 138	191	6 Oct 119	213	6 Oct 100	232	50 ct *81	251	6 Oct 62	
384	E	118	${ }^{23} \mathrm{Sep} 175$	197	23 hep 156	76	21 Sep *17	195	24 Sep 118	14	21 Sep 90	23	24 Sep 80	252	$24 \mathrm{Sep}{ }^{\text {-61 }}$	
35		139	12 Oct 174	158	120 ct	177	Oct	19\%,	at * 117	215	13 Oet 98	234	13 Oct iy	2 S 3	13 Oct 60	
38		140	30 Sep*1is	179	1 Oct lit	178	10 cc 135	197	1006116	216	1 Oct *97	235	2046	254	2 Oct 59	
354		$1+1$	19	tho	14 Oct. ${ }^{\text {P }} 51$	179	20 Oct 14	198	20 Oct 115	17	20 Oct 96	236	20 Oct 77	235	21 Oct 68	
35		$1 \pm$	8 Oct	161	3 Oct	180	at *13t	191)	9 Oet 114	218	9 Oct 95	237	9 Oct 78	250	9 Oct. *67	
${ }^{384}$	E vim	143	23 Sep 170	16	28 Sep 161	151	28 Sep 132	210	28 Sep "114	219	29 Scp 94	238	29 Sep 75	257	29 Sep 56	
354	18	144	16 Out	19.1	17 Oct 150	182	17 Oct 131	201	17 Oct. 112	220	$170 \mathrm{ct}{ }^{4} 93$	239	18 Oct 74	258	18 Oct 65	
35		145	5 Oct 11	161	$50 . t * 149$	183	6 Oct	202	0	21	${ }_{6} 6$ ct 92	240	6 Oct *i3	2515	7 Oct 6t	
33	E	140	24 Scp 167	16%	24 Sep 188	184	24 Sep *129	203	25 Sep 110	222	25 Sep 91	241	$26 \mathrm{Sep} \quad 72$	260	$25 \mathrm{Sep}{ }^{63}$	
324		147	$1+$	169	14 Ocr	155	1\% at 12s	204	$110.6{ }^{1010)}$	22.31	150 ct	212	15004	261	15 Oot. 52	
384	E. 1	148	2 Oct *16	167	304	186	,	0	3 Oct. 108	24	3 Oct. *9	213	4 Oct	26.	4 Oct 51	
36		149	Oct	168	$210 \mathrm{ct}$. *145		$230 \mathrm{ct}$.		22 Oct 107	225	$220 \mathrm{ct} \quad 88$	24	22 OLt *69	243	23 Oct 50	
35	xv	150	ct	169	ct	185	10 Oot * $12 \overline{1}$	207	11 Oct 106	226	110 cts 87	245	11 Ott 68	204	11 Oct * 19	
384	E.	51	29 Sep 162	150	29 Sep 143	189	29 Sep 124	208	$29 \mathrm{Sep}{ }^{105}$	227	30 Sep 86	246	10 Sep 67	260	$30 \mathrm{Sep} \quad 48$	
354	2	153	17 Ott 161	171	180 ct 142	190	18 Ott 123	209	18 Oct 104	28,	180 ct * 85	218	19 Oct 66	260	19 Oct. 47	
${ }^{356}$	17\%	153	6 Oct. 160	172	${ }_{6} 0 \mathrm{Oct}$ * $1+1$	191	7 Oot 122	210	7 Oct 103	229	$70 \mathrm{ct}$. 84	248	7 Oct *5	267	8 Oet 46	
38.	K.	154	26 Sep 169	178	26 Sep 140	192	\| 27 Sep *121		211	27 Sep 103\|	2	27 Sep 83	249	27 Sep 64	268	28 Sep ${ }^{\text {P }}$ 8

TABLE VII.-(Contd.)

SELEUKIDANERA.
Intral Dayz-CYCLE OF MKTON.

$\begin{gathered} \text { Dane } \\ \text { fin } \\ \text { Year. } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Years } \\ \text { of } \\ \text { Cyole } \end{gathered}\right.$	$\begin{array}{\|l\|l\|} \hline \mathbf{n n} \\ \text { Sel } \end{array}$	XV CYOLE B C	$\left\lvert\, \begin{aligned} & \text { An } \\ & \text { Sel } \end{aligned}\right.$	$\begin{gathered} \text { XVI } \\ \text { CTCLE. } \end{gathered}$		XVII CYCLE		XVIII CYCLE A D	Anm	XIX CYOLR A D	An	XX CYCLE A 1	An	XXI CYCLR A. D
Days		269	16 Oct 44	288	$160 \mathrm{ct}$. * 2 s	307	17 Oct	326	17 Oct 14	345	17 Oct. 33	36t	Oct *iz2	3	71
354	i1	270	6 Oct 43	289	Oct 24	308	${ }^{6}$ Oct *5	327	Oct 15	16	7 Oct 31	36.	70 ct		* *72
38	¢	271	$25 \mathrm{Sep} \quad 42$	290	25 Sep 23	49	${ }^{2} \mathrm{Sep}$	328	$25 \mathrm{Sep} * 16$	317	26 Sep 35	366	26 Sep	385	26 Sep 73
364		272	13 Oct * 11	20	14 Oct 22	310	140 ct	29	14 Oct 17	48	14 Oct *36	367	ct		74
384		273	40	292	ct 21	311	; 0ct	310	30ct 18	349	3 Oot	368	ct		ct 75
3 OL		274	21 Oot 30	29	210 ct .20	312	$210 \mathrm{ct}.{ }^{1}$	331	22 Oct 19	350	22 Oct	369	220 ct 57	388	76
355	vu	275	10 Oct 38	294	10 Oct. 19	313	10 Oot A D 1	322	10 Oct *20	351	11 Oct 39	370	11 Oct 58		Oot. 77
384	E \square^{1}	276	$29 \mathrm{Scp}{ }^{\text {* }} 37$	295	30 Sep 18	314	, 0 Sep	3.1	$30 \mathrm{Scy} \quad 31$	352	$30 \mathrm{Scy} \times 40$	371	1 Oct 59	390	1 Oct 78
364		277	18 Oct 36	296	180 ct	310	19 Oct	33	19 Oct 22	383	19 Oct 41	372	190 ct	391	ct. 79
354		278	7 Oct 35	297	70 ct	316	70 ct. *t	335	8 Oct 23	J3t	ct	373	8 Oct 61		*80
	E \times	279	26 Sep 34	208	26 Sep	317	${ }^{6} \mathrm{Sep}$	316	26 Sep *24	155	${ }^{27} \mathrm{Scp}$	74	27 Sep c2		27 Sep 81
		280	15 Oct *33	299	16 Oct 1	318	160 ct	377	16 Oct $2 ;$	356	${ }^{4}$		17 Oct		7 Oct 82
$38 \pm$	E. m	281	Oct. 32	300	Oct *13	319	5 Oct	338	Oct. 26	357	5 Out 45	76	5 Oct	495	Oct. 83
954		282	23 Oct 31	301	23 Oct 12	320	23 Oct *s	339	21 Oct. 27	358	24 Oct 16		130		
354		283	12 Oct 30	302	12 Oct. 11	321	120 ct	310	12 Oct 28	379	13 Oct. 47	378	13 Oct 66		Oct. 85
384	E	284	30 Sep	303	1 Oct. 10	322	1 Oct 10	341	1 Oct. 29	300	1 Oct * 18	379	2 Oct 67		86
854		285	19 Oct 28	304	190 ct. *9	323	20 Oct 11	42	20 Oct.	361			20 Oet *68		21 Oot a7
355	xvu	286	8 Oct. 27	305	80 ct	324	ct. *12	43	90 ct 31	362	${ }^{9}$ Oct 50	381	90 ct 69		88
384	E. x	287	28 Sep 26	306	28 Sep	325	28 Sep 13	344	29 Sep *32	363	29 Sep	82	29 Sep		29 Sep 89

6,940 days an 19 yeark,
The stars deaote leap yeare of Juhan reakoning.

TABI等 VITI．
$N u m b e r$ of days un the IIndu SOLAR year

Days			$\begin{gathered} \text { 嵒 } \\ \text { 霑 } \end{gathered}$	$\begin{aligned} & \text { d } \\ & \text { 品 } \\ & \text { 岲 } \end{aligned}$	$\begin{aligned} & \text { 岩 } \\ & \text { 号 } \end{aligned}$	$\stackrel{\stackrel{\leftrightarrow}{E}}{\stackrel{E}{E}}$		最 最 E		$\begin{aligned} & \text { 息 } \\ & \text { 邑 } \end{aligned}$		蚛
1	1	32	63	0.	126	17	158	218	247	277	306	336
2	2	33	64	06	127	158	163	219	－48	278	307	397
8	3	34	6\％	97	128	1］	190	230	24）	279	108	338
4	4	9．）	66	98	129	360	111	221	$2{ }^{2} 0$	280	309	339
5	5	36	67	99	1.0	1 Cl	192	222	21	281	310	340
6	6	37	68	100	131	$1{ }^{12}$	193	223	252	282	311	341
7	7	38	69	101	13.	103	194	224	253	283	312	342
8	8	39	70	102	13	164	195	225	25.	284	313	343
9	9	40	71	103	134	165	196	226	250	285	314	344
10	10	41	72	104	135	166	197	227	206	286	315	845
11	11	42	73	107	136	167	198	228	257	287	816	346
12	12	43	74	106	137	168	199	229	258	288	317	347
13	13	44	75	107	138	169	200	230	259	289	318	348
14	14	40	76	108	19	170	${ }^{9} 01$	231	260	290	319	849
15	15	46	77	109	140	171	202	232	261	291	320	850
16	16	47	78	110	141	172	203	233	262	292	821	851
17	17	48	79	111	142	173	204	234	263	298	322	352
18	18	49	80	112	143	174	206	23；	264	29.	823	358
19	19	60	81	113	144	175	206	236	265	295	324	384
20	20	81	82	114	145	176	207	237	266	296	825	855
21	21	62	83	115	146	177	208	238	267	297	826	356
22	22	63	84	116	147	178	209	239	268	298	327	857
28	28	64	85	117	148	179	210	240	269	299	328	358
24	24	85	86	118	149	180	211	211	270	300	329	369
25	26	86	87	110	160	181	212	248	271	301	380	360
26	26	57	88	120	151	182	218	243	272	302	331	861
97	27	58	89	121	162	183	214	244	273	303	332	362
28	28	89	90	122	163	181	215	245	274	304	333	363
29	29	60	91	123	154	185	216	246	276	305	334	364
80	80	61	92	124	165	186	417		276		335	866
81	81	62	93	125	166	187	－					
38			94				－	－				

INDIAN ERAS

TABLE LX.
Approximate Initial dates of Hindu SOLAR yeare.

		AN			GOR1AN
B 0.	3110	16 February	B 0	3100	20 January
	2765	10 -		3000	21 -
		10		1500	16 February
	1615	1 March		1200	21 -
	1385	3 -		900	$26-$
	1385	3 -		720	1 Maroh
	925	7 -		360	7 -
				60	12 -
	580	10 -			19
	3 O 0	$12-$	A D	60	$14-$
				120	15
B. 0	10	15 -		180	16
A D	105	$16-$		240	$17-$
	220			300	$18-$
		$17-$		360	19
	335	18 --		420	$20-$
				480	21 -
	400	19 -		540	22
	065	$20-$		600	$23-$
				660	24 -
	680	21 -		720	$25-$
	795	22 -		780	$25-$
				840	27 -
	910	23 ——		900	23 -
				060	20 -
	1025	$24-$		1020	30
	1140	26		1080	$31-$
				1140	1 April
	1258	$26-$		1200	2 -
	1370	27		1260	8 -
				1320	4 -
	1485	$28 \longrightarrow$		1380	. 6
				1440	6 -
	1600	29 -		1500	3 -
				1ถ̆60	$6 \cdots$
	1715	$10-$		1620	9 -
	1830	31 -		1680	$10-$
				1740	11 -
	19452060	1 April.		1800	$12-$
				1860	$13-$
	2060	2 -		1920	14 -

TABLT \mathbf{x}
Number of days in the Hindu LUNI－SOLAR year．

BADI	兵	$\begin{aligned} & \text { d } \\ & \text { 总 } \\ & \text { 峟 } \end{aligned}$	$\begin{aligned} & \text { 莒 } \\ & \text { 昜 } \\ & \text { 日 } \end{aligned}$		$\begin{gathered} \text { d } \\ \text { d } \\ \text { 岂 } \\ \text { d } \end{gathered}$	気	$\stackrel{\text { d }}{\text { d }}$	者 品 品	密	$\begin{aligned} & \text { 氮 } \\ & \text { م } \end{aligned}$	$\begin{aligned} & d \\ & \text { 晏 } \\ & \text { 角 } \end{aligned}$		雨
1		16	45	75	104	134	163	193	222	252	281	811	840
2		17	46	76	105	195	164	194	223	253	282	812	341
3		18	47	77	106	136	165	195	224	254	283	313	342
4		19	48	78	107	197	166	196	225	255	284	314	343
5		20	49	79	108	138	167	197	226	256	285	315	344
6		21	50	80	109	139	168	198	227	257	286	\＄16	345
7		22	51	81	110	110	169	199	228	258	287	917	346
8		23	52	82	111	141	170	200	229	259	288	818	347
9		24	53	83	112	142	171	201	230	200	289	819	348
10		25	54	84	113	148	172	202	231	261	290	320	340
11		26	55	85	114	144	179	203	232	262	291	321	350
12		27	56	86	115	145	174	204	233	263	292	322	351
13		28	57	87	116	146	175	205	234	264	293	323	352
14		29	58	88	117	147	176	206	235	265	294	324	853
16		30	59	89	118	148	177	207	236	266	295	325	354
SUDI													
1	1	31	60	80	119	149	178	208	237	267	296	326	
2	2	82	61	91	120	150	179	209	238	268	297	327	
3	8	83	62	82	121	151	180	210	239	268	298	328	－
4	4	84	68	98	122	152	181	211	240	270	299	329	
5	5	35	64	94	123	153	182	212	241	271	300	330	
6	6	86	65	85	124	154	188	219	242	272	801	381	＊＊
7	7	87	66	96	125	155	184	214	243	278	802	382	．
8	8	88	67	97	126	156	185	215	244	274	803	388	．．．
9	θ	39	68	88	127	157	185	216	245	275	304	384	
10	10	40	68	89	128	158	187	217	246	276	305	335	＊
11	11	41	70	100	129	159	188	218	247	277	306	896	
12	12	42	71	101	130	160	189	219	248	278	357	887	
13	18	43	72	102	131	161	190	220	249	279	308	338	
14	14	44	78	103	132	162	191	221	250	280	309	830	
15	16		74		133		192		251		310		

TABLE EX.
Solar Ahargana of ARYA-BHATA

TABLE XI.-(Continued).
Solar Ahargana of ARYA-BHATA

Years.	Deys	\bigcirc	Years	Daya.
67	24,472 3316		100	96,525 8680
68	24,887 5909		200	75,0517513
69	25,202 8489		300	109,577 6042
70	25,568 2076		400	146,103 4722
71	25,933 3562		800	182,629 3403
72	26,298 5248		600	219,155 2088
78	25,563 8834		700	2656810764
$7 \pm$	27,029 1422		800	292,206 9144
75	27,994 4010		900	398,732 8124
76	27,7596594		1000	365,258 6805
77	28,124 9181		2000	730,517 3611
78	284901768		9000	$1098,776.0417$
79	28,855 4350		9100	1132,3019007
80	29,2206944		3200	1168,827 7777
81	29,585 9530		3300	1205,853 6457
82	29,951 2118		3400	1241,879 5137
83	30,316 4705		3500	1,278,405 3817
84	80,681 7298		3600	1314,031 2498
80	31,0469883		3700	1351,4571178
86	31,412 2468		3800	1387,982 9858
87	31,777 5084		3900	1424,508 8 b98
88	32,142 7640		4000	1461,0347222
89	32,508.0226		4100	1497,5605902
90	32,873•2812		4200	1534,0864582
91	33,298 5798		4300	1570,6123284
92	33,603 7985		4100	1607,138 1944
29	33,960-0571		4500	1543,6540627
94	34,934 3102		4600	1680,189 9304
98	34,699 5749		4700	1716,715 7984
96	35,064 8336		4800	1753,2416664
97	35,480.0922		4900	1789,767 5344
98	85,795 3808		5000	1826,203 4027
98	86,160.5894		8100	1862,8192707

HDUN ERAE.
TABLI XII.
Solar Ahargana of SURYA-S1DDHANTA.

Years	Days	\bigcirc	Yemin	Daym
1	3652587		34	12,418 7977
2	7305175		35	12,784 0564
3	1,095 7763		88	18,1493162
4	1,461.0550		87	13,514 5739
6	1,826 2938		88	16,879 8827
6	2,1915525		89	14,2460916
7	2,856 8113		40	14,610 6502
8	2,922.0700		41	14,975 6090
9	8,267 8266		42	15,3408677
10	8,652 5878		43	18,706 1265
11	4,0178468		44	16,0718852
12	4,683 1061		45	164366440
18	4,748 3638		46	16,801 9027
14	6,119 6226		47	17,1671615
18	5,478 6818		48	175824203
16	5,844 1401		49	17,897 6700
17	6,209 3988		50	18,262 9378
18	6,574 85ı76		81	18,028 1006
19	6,069 9188		52	189064838
20	7,805 1751		58	19,358 7140
21	7,670 4839		54	19,728 9728
23	8,085 6926		56	20,089 2815
28	8,400-9813		56	20,454 4808
24	8,7662101		57	20,819 7401
25	9,181 4669		58	21,185-0078
26	9,496 7276		59	21,550-2666
27	9,861 9864		60	21,915 8254
28	10,227 2451		61	22,280.7841
29	10,602 6039		62	29,646-0428
80	10,967 7627		68	23,011 8016
81	11,328 0214		64	28,876 5604
82	11,688-2609		66	28,7418191
88	12,068 6889		66	24,107 *7\%

TABLE XII - (Continued)

Solir Aluengenu of SURYA-SIDDHANTA

Years	Daya	\bigcirc	Years	Days
67	24,472 3366		100	36,525 8756
68	248375954		200	730517813
69	25,202 8542		300	1095776269
70	25,568 1129		400	1461030026
71	25,939 3717		500	182,629 3782
72	262986304		600	2191552539
75	266538892		$710)$	2\%50811205
74	27,029 1479		800	292,207 0052
75	27,39ぬ 4067		900	128,732 8808
76	27,759 6654		1000	365,258
77	28,1249241		2000	730,517 5140
78	28,490 1830		3000	1095,7762694
79	28,855 4417		8100	1,192,302 1+51
80	292907004		\$200	1,168,828 0207
81	29,585 8592		\$300] 205,853 8964
82	29,051 2180		3100	1241,8797720
83	30,316 4767		1500	1,278,405 6477
84	30,681 7954		360	1,314,931 5233
85	31,046 9942		3700	1,981,457 8990
86	31,4122530		3800	1,987,988 2746
87	817775117		9 900	1,424,1091503
88	32,1427704		4000	1,461,035 0259
89	32,508 0292		4100	1,497,560 9016
90	82,879 2880		4200	1. 534,086-7772
91	332885467		4300	1570,6126528
92	33,603 8064		4400	1,607,198 5285
93	83,969 0642		4500	1643,6644042
94	34,3943230		4600	1,680 1902798
95	84,699 5818		4700	1716,7161555
96	35,064 S406		4800	1759,2420311
97	35,430 0988		4900	1789,7679067
98	35,795 3580		5000	1826,2937824
09	88,160 6188		5100	1,862,819 6880

TABLE XIII
Lunu-Solar Ahangana-SUCRYA-SIDDHANTA

TABLE XIII -(Continued)
Lum-Solar Allargana-SURYA-SIDDH ANTA

TABLE XIV
LUNATIONS

Number	Days	Number	Days
1	295300	34	1,004 0402
2	590612	85	1,043 5705
3	685918	65	1,063 1011
4	1181224	37	1,092 6317
5	$1476 \overline{o b}_{29}$	36	1,122 1625
6	177 1830	39	1,1516932
7	2067141	40	1,1812236
8	2362447	41	1,210 7641
9	260 770ิ3	42	1,240 2646
10	2958058	43	1,269 6152
$1:$	8248364	44	1,2998466
12	6549670	45	1,9268762
13	3638976	46	1,856 4066
14	4134282	47	1,367 19874
15	4429587	48	1,4174662
16	4724894	49	1,446 9986
17	5020201	50	1,4765294
18	6515506	51	1,506 0600
19	6610819	62	1,585 5804
20	690.6117	58	1,565 1210
21	6201429	54	1,604 6524
22	6496726	55	1,624 1880
23	6792034	56	1,688 7128
24	7087341	57	1,688 2484
26	7862647	58	1,7127740
26	7677982	59	1,7428046
27	7978262	60	1,771 8858
28	6268564	61	1,801 3059
29	6869870	62	1,880 8964
50	8659176	68	1,860 4270
81	9154462	64	1,669 9876
62	8449788	68	1,019 4882
68	8745094	56	1,949 0188

TABLE XIV -(Continued)

LUNATIONS

Number	Dars	Number	Days
67	2,078 6493	100	2,953 0588
68	2,008 0801	$2(\mathrm{~K})$	6,906 1176
69	2,0376106	900	8,859 2764
70	2,067 1411	dus	118122352
71	2,096 6716	600	14,765 2940
72	2,126 2023	609	17,7189527
73	2,165 7329	700	20,671 4115
74	2,185 2634	800	23,624 4708
75	22147940	90	26,577 5291
76	2,2443245	1000	20,530 5879
77	2,278 8551	1100	82,483 6187
78	2,803 3858	1200	85,4967054
79	2,832 9164	1300	88,989 7612
80	2,962 4470	1400	41,9428230
81	2,3919776	1000	44,295 8820
82	2,421 5082	1800	47,2489406
83	2,451 0388	1700	50,201 9994
84	2,4805692	1800	53,1550782
85	2,510 0998	1900	66,108 1170
86	2,589 6804	2000	59,061 1750
87	2,569 1610	2100	62,014 2347
88	2,598 8912	2200	64,067 2985
89	2,828 2218	2900	67,920 3523
90	2,667 7829	2400	70,873 4108
91	2,687 2836	2800	78,826 4700
92	2,7138188	2600	78,779 5284
98	2,7466442	2700	79,732 5878
84	2,775 9748	2800	82,685 6480
95	2,805 5054	2900	85,6387049
96	2,834 9364	3000	88,591 7688
97	2,864 4670	4000	118,122 3617
98	2,803 9976	5000	147,862 9397
09	2,983 8282	6000	177,183 5278

TABLE XV
HIJRA CALENDAR.
Mouths and Days of the Hula Year

MONTHS
Muharrum
safal

Rabar 1
rahas II

Jamaill I

Jamadi II
najab
sluaban

Ramzan

Shawal

Zulhada

ZilbajJa

TABLE XVI
HIJRA CALENDAR
Inituel Days of Higra Years

TABLE XVI -(Continued)
HIJRA CALENDAR.
Intial Days of Hzra Years.

TABLE XVI.-(Continued.)

HIJRA CALENDAR.

Initral Days of Huァa Years

TABLT XVI,-(Continued,)
HIJRA CALENDAR
Inetral Days of Hzıra Years

TABLE XVI.-(Continued.)

HIJRA CALENDAR.

Invtual Days of Hijra Years

EYIII
-

XXI

XXIV

XXVI
4461054 Ta 12
$*$
448 1058 Th 21 Mar
XXIX
XV-CYCLI

TABLE XVI.-(Continued.)
HIJRA CALENDAR.
Intial Days of Higra Years.

TABLE XVL.-(Continued.)
HIJRA CALENDAR.
Inttal Days of Hyra Years

TABLII XVI.-(Continued.)
HIJRA CALENDAR.
Initial Days of Hyra Years

TABLE XVI.-(Continued) HIJRA CALENDAR.

Initıal Days of Hyra Years

TABLIF XVI.-(ContInued.) HIJRA CALENDAR.
Invtral Days of Higra Years

MABIT KFI-(Oonthone)
hiJRa oalendar.
Intial Daye of Eieira Paars.

TABLRE XYI-(Continaed)

HIJRA CALENDAR.

Initial Days of Hijra Yeara.

TABLE XVI-(Continned)
HIJRA CALENDAR.
Invtral Days of Hura Years

TABL XVI.-(Conthned.)

HIJRA CALENDAR.

Initial Days of Hiyra Yeare.

TABLEE XVI-(Oonthned)
HIJRA CALENDAR.
Initial Days of Hiyra Yeare.

TABLㅍI XVI-(Concluded)
HIJRA CALENDAR.
Instral Days of Hura Years

TABLE XVII
General Table of Corresponding Dates

2ABLE XVI-(Continned.)

General Table of Corresponding Dates.

B 0	Sowne. Yent		Lunt-Solat- ${ }^{\text {gear }}$				Juptrib-Croles.				$\begin{aligned} & \text { 通 } \\ & 5 \end{aligned}$	品
	Kall	Initual	Vik	Intercal	S2k		60 Y	ears	12			
	Yaga	Das	Sam	Month	Sat	Inital Day	s Sid	TeI	Yoars			
80	3072	14 Mar	28				6315	6225	Aawa	47	288	
*29	73	13 -	29				16	26	Kart	48	284	
28	74	14-	30				17	27	Agra	49	285	
27	75	14-	31				18	28	Pansh	50	288	
26	76	14 -	32				19	29	Magh	51	287	
* 25	77	13-	${ }^{88}$				20	30	Phal	52	268	
24	78	14 -	84				21	91	Chat	53	289	
23	79	14 -	85				22	32	Vais	54	290	
22	80	14 -	86				28	33	Jyesh	55	291	
*21	3081	13 -	97				24	84	Sahad	56	292	
20	8082	14 Mar	38				25	85	Srâr	57	293	
19	83	14 -	99				28	86	Bhad	58	294	
18	84	14 -	40				27	37	Aswe	69	295	
+17	86	18 -	41				38	88	Kort	00	296	
16	86	14 -	42				99	89	Agra	81	297	
18	87	14 -	48				80	40	Panah	82	298	
14	88	14-	4				81	41	Magh	83	299	
$\cdot 18$	8	13-	46				88	42	Pral	64	800	
12	90	14-	18				88	48	Chart	85	301	
11	2001	14-	47				84	44	Vals	66	802	
	8092									87	308	
${ }^{\circ}$	28	$18 \text { - }$	49				88	48	Ashad	68	304	
8	94	14-	50				${ }^{87}$	47	Scar	89	305	
7	95	14-	51				88	48	Bhed	70	808	
6	96	14 -	52				89	49	Anma	71	307	
*	97	13 -	58				40	60	Kart	72	308	
4	98	14-	54				41	51	Agra	73	809	
3	3099	14-	${ }^{5} 5$				4	52	Panah	74	810	
8	8100	14-	${ }^{6} 6$				43	58	Magh	75	811	
${ }^{1}$	8101	18 -	57				4	84	Phal	78	812	

TABLE XVII -(Continued)

General Tuble of Comespondung Dates

A D	Solar-Year.		Luni Solar Ybar				Jupiter-CyCles					号
	Kall Yuge	Initial Day	Vik S.4m	Intercal Month		Initial Day	60 Years		$\underset{\text { Years }}{12}$			
							S Sid	Tel				
1	3102	14 Mar	68				53456	5255	Chait	77	813	
2	03	14 -	59	Srav			48	56	Vass	78	314	
3	04	14 -	60				47	57	Jyeah	79	315	
4	05	13 -	61				48	59	Ashad	80	816	
5	06	14-	62	Ashad			49	59	Srâv	81	817	
6	07	14 -	63				50	60	Bhâd	32	318	
7	08	$14-$	64					531	Aswa	83	818	
* 8	09	14 -	65	Vals			52	2	Kârt	84	320	
9	10	14 -	66				63	3	Agra	80	321	
10	3111	14 -	67	Stî̀ ${ }^{\text {Y }}$			54		Paush	86	322	
11	3112	14 Mar	68				65	5	Magh	87	323	
-12	13	14 -	69				56	6	Phâl	88	324	
13	14	14 -	70	Ashad			57	7	Chatt	89	328	
$1 \pm$	15	14 -	71				58	8	Vors	90	926	
15	16	14 -	72	Jgesh			59	9	Jyesh	91	327	
$\bullet 16$	17	14 -	73				60	10	Ashad	82	328	
17	18	14 -	74				641	11	Brár	93	320	
18	†19	14 -	76	Kar Phad				12	BLad	84	880	
19	20	14 -	76					13	Aama	98	931	
- 20	3121	14 -	77					14	Kart	96	382	
21	3122	14 Mar	78	Srîv				15	Agra	97	833	
22	23	14 -	79				ε	16	Paush	98	334	
23	24	14 -	80					17	Magh	99	835	
* 24	25	14 -	81	Ashad				18	Phal	100	336	
25	20	$1 \pm$ -	82					19	Chant	1	387	
26	27	1t	53					20	Vals	2	338	
27	28		84	Vniy				21	Jyesh	3	336	
- 28	29	1t-	85					22	Ashad	4	$9+0$	
29	30	14 -	86	Stâv				23	Srâ	5	341	
30	9181	$14-$	87					24	Bhed	6	342	

t Agrahayana ormitted.

TABLE XVII--(Continued)
General Table of Corresponding Dates

TABLE XYII.-(Continued)
General Table of Comesponding Dates

TABLIE XVII - (Continued)

General Talle of Corvesponding Dates

A \mathbf{D}	Solair Year		Luni Solar Year				Jupiter Cyclies					$\begin{aligned} & \text { 瞺 } \\ & \text { 莒 } \end{aligned}$
	$\begin{gathered} \text { Kalı } \\ \text { Yuga } \end{gathered}$	Initial Day	$\left\|\begin{array}{c} \nabla_{1 k} \\ S_{a n} \end{array}\right\|$	Intercal Month	$\left\|\begin{array}{c} \text { Sak } \\ \text { Sal } \end{array}\right\|$	Intial Days	60 Years		$\begin{gathered} 12 \\ \text { Years } \end{gathered}$			
							S Sld	Tel				
81	3192	15 Ma	148		13	Ta 8 Mar	1]6	5425	Kart	67	403	
*92	93	15 -	$1{ }^{4} 9$		14	Sa 25 Feb	17	26	Agra	68	$40 \pm$	
93	94	15 -	100	Vais	15	Th 14 Feb	18	27	Paush	69	405	
94	92	15 -	151		16	We 5 Mar	19	28	Magh	70	406	
95	96	15 -	152	Mhad	17	Sa 21 Feb	20	29	Yhâl	71	407	
*96	97	$15-$	153		18	Sa 12 Mar	21	30	Chat	72	408	
97	98	15 -	154		19	We 1 Mar	22	31	Vins	73	409	
98	3199	15 -	150	Srév	20	S 18 Feb	23	32	Jyerh	74	410	
99	3200	15 -	156		21	Sa 9 Mar	24	31	Ashad	75	411	
*100	3201	15 -	157		22	We 26 Feb	25		Sráv	76	412	
101	3202	15 Mar	158	Jyeah	23	Mo 15 Feb	26	35	Buad	77	418	
102	03	15 -	159		24	S 6 Mar	27	36	Aswa	78	414	
103	01	15 -	160		25	Th 23 Feb	29	37	Kuit	79	115	
${ }^{*} 104$	05	10 -	161	Chatt	26	Mo 12 Feb	29	38	Agra	80	416	
105	00	15 -	162		27	Mo 3 Mar	30	39	Paush	81	417	
106	07	1^{5} -	163	Srav	28	Fi 20 Feb	31	40	Magr	82	418	
107	08	15 -	164		29	Ih 11 Mar	32	41	Phâl	83	419	
*108	09	15 -	167		30	Mo 28 Feb	33	42	Chat	84	420	
109	10	15 -	166	Ashad	31	Sa 17 Feb	34	43	Vals	85	421	
110	3211	15 -	167		32	Fr 8 Mar	35		Jyesb	80	422	
111	3212	15 Ma	168		33	Tu 25 Feb	36	45	Ashad	87	423	
${ }^{*} 112$		15 -	169	Vais	34	Sa 14 Feb	37	46	Srav	88	424	
113	14	15 -	170		35	Sa 5 Mar	38	47	Blid	89	420	
114	15	15 -	171	Bbed	36	Tu 21 Feb	39	48	Aswa	90	426	
115	16	15 -	172		97	Mo 12 Mar	40	49	Kert	91	427	
*116	17	$15-$	173		38	Sa 1 Mar		50	Agra	92	428	
117	18	15 -	174	Srâr	39	We 18 Feb	42	51	Pausb	93	429	
118	19	15 -	$17 t$		40	Tu 9 Mai	43	52	Magh	94	430	
119	20	$15-$	176		41	Sa 26 Feb	44	83	Pbâl	95	431	
*120	3221	15 -	177	Jyesh	42	We 15 Feb	145	$54 \quad 54$	Chatt	96	432	

TABLE XVII－（Continued ）
General Table of Cornesponding Dutes

A D	Solar－Yeam		LUNI－SOLAE－YEAR				Jopiter Cucles			$\begin{aligned} & \text { 気 } \\ & \text { 总 } \\ & \text { 兑 } \\ & \text { 品 } \end{aligned}$	$\begin{aligned} & 5 \\ & \mathbf{y y} \\ & \mathbf{8} \end{aligned}$	
	$\begin{gathered} \mathrm{K}_{\mathrm{al}}^{1} \\ \text { Yuga } \end{gathered}$	Intial Day	$\left\|\begin{array}{c} V_{1 k} \\ S_{a n 1} \end{array}\right\|$	Intercal Month	SakSal	Initial Day	60 Yeara		$\underset{\text { Years }}{12}$			
							S Sxd	Tel				
121	3222	15 Mar	178		43	We 6 Mar	146	5465	Vars	97	433	
122	23	15 －	179	\dagger	44	S 29 Feb	47	56	Syesh	98	434	
123	21	15 －	180	Chait	45	Th 12 Feb	48	57	Ashad	99	435	
＊124	2 n	15 －	181		46	Th 3 Mar	49	58	Srav	100	416	
125	26	15 －	182	Srà ${ }^{\text {¢ }}$	47	Mo 20 Feb	50	59	Bhâl		437	
120	27	10 －	3		48	$9 \quad 11 \mathrm{Maz}$	51	60	Asma	2	438	
127	28	15－	184		49	Mo 29 Feb	52	551	Kêrt	3	439	
－128	29	15－	$18 i 4$	Ashad	10	Fr 17 Feb	53	2	Agra	4	440	
129	30	15 －	186		51	Mo 8 Mar	54	3	Papsh	5	441	
130	3231	15 －	187		62	Fr 25 Feb	65	4	Magh	6	442	
131	3232	1）Mar	188	Vais	65	Tu 14 Feb	65	6	Phal	7	443	
＊132	33	15 －	189		$6 \pm$	56 Mnr	67	6	Chait	8	444	
133	34	16 －	190	Blûã	55	Fr 21 Feh	68	7	Vals	0	445	
13i	35	15 －	191		66	Th 12 Mar	69	8	Jyesh	10	416	
135	36	15－	192		57	Mo 1 Mar	60	9	Ashad	11	447	
＊ 126	37	15 －	193	Srav	53	Fr 18 Feb	21	10	Slay	12	＊ 48	
137	38	$15-$	194		59	Fr 9 Mar	2	11	Phard	13	449	
138	39	$15-$	145		60	Tu 26 Feb	3	12	Aswa	14	450	
139	40	$15-$	196	Jyenh	61	Tu 15 Feb	4	13	Kârt	16	451	
＊ 140	3241	$15-$	197		62	Sa 6 Mar	6	14	Paush	16	452	
$\ddagger 141$	3242	15 Mar	198	Aswn	63	We 23 Feb	7	15	Màgh	17	458	
142		$15-$	109		64	We 12 Feb	8	16	Phal	18	45.	
143	44	15 －	200		65	Sa 3 Mar	9	171	Chart	19	458	
＊144	45	15 －	201	Srât	66	Sa 20 Frb	10	18	Vals	20	466	
145		$15-$	202		67	We 11 Mar	11	19	J yesh	21	157	
146	47	15 －	208		68	We 23 Feb	12	20	Ashad	22	2458	
147	48	15 －	204	Jyesh	69	S 17 Feb	14	31	Srav	23	3450	
＊148	49	$15-$	205		70	Th 8 Mar	14	22	Bhâd	24	4． 460	
140	50	15 －	200		71	Mo 25 Feb	15	24	Aswa		5461	
150	3251	15 －	207	Vals	72	Mo 14 Feb	216	65 24	Kârt	26	6462	

TABLE XVII -(Continued)

General Table of Corresponding Dates

TABLE XVII．－（Continued）

General Table of Correopondung Dates

A D	Solar－MEar		Luni－Solat－FEAR				Jupiter－Cycles			$\begin{aligned} & \text { 畄 } \\ & \text { 总 } \\ & \text { 亳 } \end{aligned}$		$\begin{aligned} & \text { 曷 } \\ & \text { 亳 } \end{aligned}$
	$\begin{gathered} \text { Kalı } \\ \text { Yuga } \end{gathered}$	Initial Day	$\begin{aligned} & V_{\mathbf{r}} \\ & \operatorname{Sam} \end{aligned}$	Intercal Month	$\left\{\begin{array}{l} \text { Sak } \\ \text { Sel. } \end{array}\right.$	Initual Day	60 Years		$\stackrel{12}{\text { Xearg }}$			
							S Sid	Tel				
181	3282	15 Mar	238		103	Fr 3 Mar	247	65 55	Jyenh	57	498	15
182	83	16 －	239	Srav	104	Tu 20 Feb	48	56	Ashad	58	494	16
183		16 －	240		105	Mo 11 Mar	49	57	Srav	59	495	17
＊184		15 －	241		106	Fr 28 Feb	60	58	Bhad	60	498	18
186		15 －	242	Jyesh	107	We 17 Feh	51	59	Agwa	61	497	19
186		$16-$	243		108	Tu 8 Mar	52	50	Kart	62	498	20
187	88	16 －	244		109	Sa 25 Feb	53	581	Agran	63	499	11
＊188	89	15 －	245	Va18	110	We 14 Feb	54	2	Paubb	54	500	22
189	90	16 －	246		111	We 5 Mar	55	8	Magh	65	501	23
190	3291	16 －	247	Bhad	112	Sa 21 Feb	68	1	Phil	66	502	24
191	3292	16 Mar	248		117	Fr 12 Mar	57	6	Chait	67	603	25
＊192	93	16 －	249		114	We 1 Mnr	58	6	Vals	68	604	26
193		16	250	Aebad	115	S 18 Feb	69.	7	Jyesh	69	505	27
194		18 －	251		116	Sa 9 Mar		9	A＜bad	70	506	28
195	96	16 －	252		117	We 26 Feh		$)$	Stav	\％1	307	29
＊196	97	$15-$	253	Jyesh		S 16 Feb	2		Brad	72	508	30
197	98	$16-$	254		11	56 Mal	3		Asta	73	609	31
198	3299	16	255	Aswa	120	Th 23 Feb	4	12	K边t	74	510	32
199	3800	16	256		12	We 14 Mar	6		Agra	75	511	33
${ }^{2} 200$	3301	15	257		122	Mo 1 Mar	6		Paunh	76	512	84
201	3302	15 Mar	258	Sisp	123	Fr 20 Feb	7		MÉgh	77	513	35
202		$15-$	259		124	Th 11 Mar	8	15	Phal	78	514	56
203		16 －	260		125	Mo 28 Teb	9		Chait	79	15	37
＊204		$15-$	261	Jyenh	126	Fr 17 Feb	10	18	Jais	80	516	38
205	05	$15-$	2 h 2		127	Fr 6 Mar	11		Jyesh	81	517	39
206		$16-$			128	Tu 25 Feb	12	20	Ashad	82	518	40
207		$15-$	264	Chat	120	Sa 14 Feb	9		Srav	83	519	41
－208		15 －	255			Sa 5 Mar		22	Bhad	84	520	42
209		16－	285	Srêv	131	Tu 21 Feb		23	Abwa	85	521	43
210	3311	$16-$	267		132	Mo 12 Mar	316	6824	Kârt	86	522	44

TABL ${ }^{2}$ XVII．－（Continued．）

General Tabls of Corresponding Dates

A．D	Solar Yrar．		Lumi－Solat－YEat				Jupiter Cyclate			$\begin{aligned} & \text { 总 } \\ & \text { 蒠 } \\ & \text { 莮 } \end{aligned}$		
	$\begin{aligned} & \text { Kalı } \\ & \text { Yaga } \end{aligned}$	Intial Day	Vik Sam	Intercal Month	$1 \begin{aligned} & \mathrm{Sak} \\ & \mathrm{Sal} \end{aligned}$	Initzal Day	60 Years		${ }_{\text {Yearn }}^{12}$			
							8 shd	Tal				
211	8812	16 Mar	268		139	Fr 1 Mar	317	5625	Agra	87	523	45
－ 212	13	$16-$	269	Ashad	134	Tu 18 Feb	18	26	Paush	88	524	48
213	14	16 －	270		135	Tu 9 Mar	19	27	Magh	89	525	47
214	15	16 －	271		188	Ss 26 Feb	20	28	Phal	90	526	48
210	16	16 －	272	Jyeah	137	Wo 15 Feb	21	29	Chat	91	527	49
－ 216	17	16 －	273		158	We 6 Mar	22	． 80	Vais	92	528	50
217	18	16 －	274	Anwt	159	523 Feb	23	81	Jyeah	93	529	81
218	19	16 －	278		140	Sa 14 Mar	24	82	Aebad	94	530	52
219	20	16 －	275		141	We 3 Mar	25	39	8rav	85	531	53
－ 220	8321	$16-$	277	8râv	142	S 20 Feb	26	84	Bhed	96	532	st
221	3822	16 Mar	278		149	811 Mar	27	35	Aswa	97	533	85
222	29	16 －	279		144	Th 28 Feb	28	86	Kart	98	534	56
223	24	16 －	280	Jjesh	145	Mo 17 Freb	29	97，	Agrn	99	535	67
－ 224 －	25	16 －	281		146	Mo 8 Mar	90	88	Paush	100	536	58
225	28	$16-$	282		147	Fr 25 Feb	32	39	－Phbl	1	537	50
226	27	16 －	289	Chaut	88	Tu 14 Feb	89	40	Cbatt	2	538	60
227	28	16 －	284		148	Mo 5 Mar	84	41	$\nabla_{\text {big }}$	8	530	61
－ 228	29	16 －	285	Briv	150	Th 21 Feb	35	42	Jjesh	4	540	62
229	80	16 －	286	－•	151	Th 13 Mar	86	48	Ashad	5	541	68
290	8881	16 －	287	．	152	Mo 1 Mar	87	44	Srîy	6	542	64
281	8892	16 Mar	288	Ashad	153	Fr 18 Feb	88	45	Bhad	7	543	65
－ 282	88	16 －	289		154	Fr 9 Mar	89.	46	Anwa	8	544	50
293	84	16 －	290		155	Tu 26 Feb	10	47	Kârt	9	545	67
234	95	$16-$	291	Vals	156	Tu 15 Feb	41	48）	Agra	10	546	68
235	85	16 －	292		157	Mo 6 Mar	42	40	Paush	11	547	65
－ 238	37	16－	203	Bhad	158	Fr 23 Feb ．	48	50	Magh	12	548	70
237	88	$16-$	294			Fr 14 Mar	44	51	Pbâl	13	540	71
238	89	$16-$	290		160	Tu 3 Mar	45	52	Chait	14	550	72
239	40	16 －	296	Bxty	161	We 20 Fob	48	53	Vaia	16	－	79
＊240	8941	16 －	297		162	Wo 11 Kar	347	68． 84	Jyenh	16		74

TABLE XVII.-(Continued.)
General Table of Correspondeng Dates

† Kartika onutied, and Imrika solerialacy.

TABLE XVII．－（Continued）
General Table of Correspondrng Dates

A．D	golat－Ygar．		LUNI Solar－year				Jupiter－Cyoles				$\begin{aligned} & \text { 曹 } \\ & \text { 㤩 } \\ & \frac{D}{6} \end{aligned}$	$\begin{array}{\|l} \text { 昆 } \\ \text { 若 } \end{array}$
	$\begin{gathered} \text { Kalı } \\ \text { Ynge } \end{gathered}$	Initnal Day	Vik Sam	Intercal Month	$\left\|\begin{array}{c} \text { Sak } \\ \text { Sal } \end{array}\right\|$	Inutial Day	60 Years		$\stackrel{12}{\text { Years }}$			
							S Sid	Tel．				
271	3372	17 Mar	328		198	826 Feb	418	6725	Parsh	47	22	
－ 272	73	$16-$	829	Vals	194	Th 15 Feb	19.	25	Magh	48	23	10
273	74	17 －	390		195	Th 5 Mar	20	27	Phal	49	24	10
274	75	17 －	331	Bhàd	195	Mo 23 Feb	21	28	Chalt	50	25	10
275		17 －			197	Mo 14 Mar	22	29	Vass	81	26	10
－ 275	77	$15-$	338		198	Fr 3 Mar	23	30	Jyesh	52	27	11
277	78	$17-$	334	Brầ	199	Ta 20 Feb	24	31	Ashad	53	28	11
278	79	17 －	35		200	Mo 11 Mar	25	32	Srâv	54	29	1
270	80	$17=$	6		201	Fr 28 Feb	26	33	Bhad	55	30	11
－ 280	3381	$16-$	337	Jyeah	202	Ta 17 Feh	27	84	Aswa	56	31	11
281	3382	17 Mar	338		208	Tu 8 Mar	28	35	Kart	57	32	
282	83	17 －	339	\dagger	204	Sa 25 Feb	29	86	Agra	58	38	
283		17 －	340	Chatt	205	We 14 Feb	0	87	Paush	99	34	11
－ 284	85	$16-$	341		206	We 5 Mar	31	88	Magh	60	35	
285	86	$17-$	2	Srâv	207	Sa 21 F＇eh	32	89	Phal	61	36	
286		17 －	343		208	Fr 12 Mar	33	40	Chart	62	37	2
287	88	$17-$			209	Ta 1 Mar	34	41	Fas	53	38	2
－ 288		$16-$	345	Jyeah	210	St 18 Feh	6	42	Jyesh	54	39	
280	90	$17-$			211	8． 9 Mar	36	48	ashad	56	40	2
290	3991	17 －	847	＂	212	We 25 Feb	87	44	Brit	67	41	12
291	8392	17 Mar	348	Vals	218	S 15 Feh	88	45	Bhed	67	42	
－292		$16-$	348		14	86 Mar	38	46	A＋wa	68	43	
203		17 －		Bhad	15	Th 23 Feb	0	47	Kirt	69	44	
294		$17-$	351		16	We 14 Mar	41	48	Agra	70	45	
295		17 －	352		7	38 Mar	42	49	Paush	71	46	
－ 296	87	$16-$	353	Ashad	218	Th 20 Feh	43	50	Magh	72	47	
297		$17-$	354			Th 11 Mar	44	51	Phal	73	48	
298	99	$17-$	355		20	Mo 28 Feh	5	52	Ohait	74	49	
299	3400	17 －		Jyesh	221	Fr 17 Feh	46	53	Vais	75	50	13
－ 300	3401	16 －			222	Fr 8 May	447	5754	Jyeeh	76	51	3

Agribyas omittel and Aswine mervelary．

TABLE XVII.-(Continued.)

General Table of Corresponding Dates

A D

TABLIE XVII.-(Continued.)
General Table of Corresponding Dates

AD	Solaz-Teas.		LUSI-Solar-Yeiz				Jtpitin-Cicles.				$\begin{aligned} & \text { G } \\ & \infty \\ & \text { 茇 } \\ & \text { 8 } \end{aligned}$	
	$\begin{gathered} \text { Kalı } \\ \text { Yuga } \end{gathered}$	Initial Day	$\begin{array}{\|c} V_{1 k} \\ S_{s a m} \end{array}$	Intercal Month	$\left\|\begin{array}{l} \text { Salk } \\ \mathrm{Bal} \end{array}\right\|$	Initial Day	60 Years		${ }_{\text {Yeert }}^{12}$			
							S sid	Tel				
331	8432	17 Mar	388	Bhed	253	Ta 23 Feb	819	8825	Magh	7	82	168
-332	33	-	389		254	Tu 14 Mar	20	26	Phal	8	83	166
883	84	-	890		256	Sa 3 Mar	22	27.	Chart	9	84	167
334	35	-	391	Abhad	206	We 20 Feb	22	28	Vais	10	85	168
835	86	-	392		257	Tu 11 Mar	23	29	Jyeah	11	86	168
*386	87	-	393		228	St 28 Feb	24	30	Ashad	12	87	170
337	88	-	394	Jyerh	259	S 17 Feb	25	81	Brâv	18	88	171
338	39	-	395		260	We 8 Mar	28	92	Bhad	14	89	172
838	40	-	396	Asws	261	S 25 Fob	27	33	Aswa	15	90	178
* 340	3441	-	397		262	g 16 Mar	28	84	Kart	16	91	174
341	3442	-	398		263	Th 5 Mar	29	85	Agra	17	92	175
342	43	-	399	Sriv	264	Th 21 Feb	30	36	Pansh	18	93	176
343	44	-	400		265	Se 12 Mar	31	97	Magh	19	94	177
-344	45	-	401		266	Th 1 Mar	32	88	Phal	20	96	178
345	46	-	402	Jyenh	267	Mo 18 Feh	33	39	Chart	21	80	179
340	47	-	403		208	59 Mar	34	40	Vars	22	97	180
347	48	-	404		269	Th 26 Feb	85	41	Jyesh	23	98	181
*318	49	-	408.	Chalt	270	Mo 15 Feb	86	42	Asbac	24	99	182
349	50	-	406		271	Mo 6 Mar	87	43	Srât	25	100	183
850	8451	-	407	Sràr	272	Fr 23 Feb			Bhad	26	101	184
361	3452	-	408		273	Ih 1t Mar	38	45.	Asws	27	102	185
*3022	53	-	409		$27 t$	Tu 3 Mar	40	46	Kart	28	103	86
353	54	-	410	Ashad	275	Sa 20 Feb	41	47	Agra	29	104	87
354	55	-	411		276	Fr 11 Mar	42	48	Paush	30	105	188
355	66	-	412		277	Tu 28 Feb		49	Magh	31	106	89
*306	57	-	413	Jjesh	278	Sa 17 Feb	44	50	Phâl	32	107	190
357	58	-	414		278	Sa 8 Mar		51	Chat	33	108	191
358	59	-	413	Asws	280	We 25 Feb	45	52	Vais	34	109	192
359	60	-	416		281	Ta 16 Mar		53	Jyenh	35	110	188
*360	3461	-	417		282	S 5 Mar	548	6854	Ashad	86	111	194

TABL XI XYII.-(Continued.)
General Table of Correspondng Dates

A.D	Solab-Year		Luni-Solar-Year				Jepiter-Cyelies				$\begin{aligned} & \text { 哥 } \\ & \text { z} \\ & \text { 范 } \end{aligned}$	
	$\begin{aligned} & \mathrm{K}_{\mathrm{al}}^{2} \\ & \text { Yuga } \end{aligned}$	Initial Dey	$\left\lvert\, \begin{aligned} & \nabla_{1 \mathbf{k}} \\ & \text { Sam } \end{aligned}\right.$	Intercal Month	$\begin{aligned} & \mathbf{S}_{s k} \\ & \mathbf{S}_{\mathrm{al}} \end{aligned}$	Initial Day	60 Years		$\frac{12}{\text { Yeart }}$			
							3 Sid	Tel				
361	3462	17 Mar	418	Ashad	283	We 21 Feb	649	8855	Srâ	37	112	195
362	63	-	419		284	Ta 12 Mar	50	56	Bhâd	88	113	186
363	64	-	420		285	Sa 1 Mar	51	57.	Abwa	39	114	197
${ }^{*} 964$	6 ¢	-	421	Jyeah	286	We 13 Mar	62	58	Kart	40	115	198
365	66	-	422		287	We 9 Mar	63	59	Agra	41	116	199
366	67	-	423	Phal	286	S 26 Feb	54	60	Paush	42	117	120
367	68	-	424		289	Ss 17 Mar	55	591	Mâgh	43	118	201
- 366	69	-	425	Sriv	290	Wo 6 Mnr	56	2	Phal	44	119	202
369	70.	-	426		291	Mo 23 Feb	57	8	Chat	45	120	203
870	8471		427		292	S 14 Mar	56	,	Vala	46	121	204
371	8472	-	428		299	Th 8 Mar	59	8	Jyesh	47	122	205
${ }^{*} 872$	78	-	429	Ashad	294	Mo 20 Feb	60	6	Ashad	48	128	206
973	74	-	430		295	Mo 11 Mar	61	7	Srit	49	124	207
374	75	-	431			Fr 23 Feh	2	8	Bhad	50	125	2088
975	76	-	432	Vais	297	Tu 17 Feb	3	9	Abwa	51	126	200
* 876	77	-	433		298	Ta 8 Mar	4	10	Kırt	52	127	210
877	78	-	434	Bhad	298	Sa 26 Feb	5	11	Agra	53	128	211
378	79.	-	435		300	Fr 16 Mar	6	12	Paush	54	129	212
879	80	\sim	4\%		301	Tu 5 Mar	7	18	Magh	55	130	218
* 380	3481		437.	Ashed	802	Fr 2\& Feb	8	14	Phal	66	181	
981	5482	-	488		308	Fr 12 Mrr	9	15	Chant	57	132.	216
382	88	-	439		$304{ }^{1}$	Tu 1 Mar	10	16	Veas	56	183	316
383	84	-	440	Jyesh	305	Sa 18 Feh	11	17	Jyesh	59	184	217
-384	35	-	441		306	Sa 9 Mar	12	18	Ashad	60	195	218
865	86	-	442	Phal	307	We 26 Feb	18	19	Srà	61	136	210
386	87	-	443		308	Tu 17 Mar	14	20	Bhâd	62	137	220
887	86	-	444		309	Ss 6 Mar	15	21	Aswa	63	188	221
${ }^{+888}$	39	-	445	Sriv	310	We 23 Feb	16	22	Kart	64	139	222
880	90	-	446	.. 8	811	We 14 Mar		28	Agrs	65	140	228
890	3491	-	447	- 8	312	S 3 Mar	618	5024	Pauah	66	141	224

TABLE XVII．－（Continued．）

General Table of Correoponding Dates

A D	Solar－Ybar．		Luni Solar－Yrat．				Jupiter－CxCles			$\begin{aligned} & \text { 寻 } \\ & \text { 舀 } \\ & \text { 总 } \\ & \text {. } \end{aligned}$		$\begin{aligned} & \text { 联 } \\ & \text { 信 } \\ & \text { 吕 } \end{aligned}$
	$\begin{gathered} \text { Kalı } \\ \text { Yuga. } \end{gathered}$	Initial Day			Sak Sal	Inital Day	60 Years		$\stackrel{12}{\text { Year: }}$			
							S Sld	Tel				
391	3492	17 Mar	448	Ashad	319	Th 20 Feb	619	5925	Magh	67	142	225
＊392	93	－	449		314	Th 11 Mar	20	26	Phâl	68	143	226
393	94	－	450		315	Mo 28 Feb	21	27	Chart	69	144	227
394	95	－	451	Vals	316	Fr 17 Feb	22	28	Vans	70	145	228
395	96	－	452		317	Th 8 Mar	－24	29	－Ashed	71	146	229
＊396	97	－	453	Bhad	318	Mo 25 Feb	25	30	Srâ	72	147	230
397	98	－	454		319	Mo 16 Mar	26	31	Bhad	79	148	231
998	89	－	455		320	Fr 5 Mar	27	32	Aswa	74	149	232
399	9500	\cdots	456	Ashed	321	Mo 21 Feb	28	33	Kârt	75	150	23.
＊ 400	3501	17	457		322	Mo 12 Mar	29	84	Agra	76	151	234
401	3502	$18-$	458		323	Fr 1 Mar	30	35	Paush	77	162	238
402	03	18 －	459	Jyesh	324	Tu 18 Feb	31	36	Magh	78	153	36
403	04	18	460		325	Mo 9 Mar	32	37	Phàl	79	154	237
－404	05	17 －	461	\dagger	326	Fr 26 Feb	33	98	Chatt	80	155	298
405	06	$18-$	462	Chast	327.	We 15 Feb	34	90	Valn	81	156	239
406	07	$18-$	463		328	Tr 6 Mar	35	40	Jyesh	82	157	240
407	08	$18-$	464	Srât	329	Sa 23 Feb	86	41	Ashad	88	158	241
＊ 408	09	17 －	465		330	Sa 14 Mar	37	42	Srâv	84	159	42
409	10	$18-$	466		331	We 3 Mar	38	43	Bhad	85	160	248
410	3511	$18-$	467	Ashad	332	$\mathrm{S} \quad 20 \mathrm{Feb}$	39	44	Aswa	8 C	161	244
411	3512	18	468		337	Sa 11 Mar	40	45	Kirt	87	162	248
＊412	13	17 －	469		334	We 28 Feb	41	46	Agra	88	163	246
413	14	18 －	470	Vals	335	Mo 17 Feb	42	47	Paush	89	164	247
414	15	18 －	471		336	58 Mar	43	48	Magh	90	165	248
415	16	18 －	472	Bhâd	337	Th 25 Feb	44	49	Phal	91	166	248
－116	17	18	473		338	Th 16 Mar	45	50	Chait	92	167	250
417	18	18 －	474		339	Mo 5 Mar	46	51	Vais	93	188	251
418	19	18 －	475	Ashad	340	S 21 Feb	47	82	Jyeah	94	169	252
419	20	$18-$	476		341	We 12 Mar	48	83	Anhed	95	170	258
＊ 420	3521	18 －	477		842	Mo 1 Mar	648	69．64	Srêv	98	171	254

t KAruke retreuched asd Eirita inseromiary．

TABLE XVII.-(Continued,)
General Table of Corresponding Dates

A D	Solat Year.		Luni-Solab-Yeab				Juptter-Cyolers.					品
	$\begin{gathered} \text { Kalı } \\ \text { Yaga } \end{gathered}$	Initial Day	VıkSam	Intercal Month	$\left\|\begin{array}{l} S_{a k} \\ \mathrm{Sal} \end{array}\right\|$	Intual Day	60 Years		12 Years			
							S Sid	Tel				
421	8522		478	Jyeek	343	Fr 18 Feb	850	5955	Bhêd	97	172	255
422	23		479		344	Th 9 Mar	51	56	Arwa	98	173	250
423	24		480	\dagger	34.	Mo 26 Feb	52		Kûrt	99	174	257
* 424	25		481	Chnit	46	Fr 15 Fib	53	58	Agra	100	175	255
42 K	26		482		347	Fre 6 Mar	54		Paush	1	176	259
426	27		483	Srav	348	Tu 23 Feb	65	60	Magh	2	177	260
427	28		484		340	Mo 14 Mas	56	601	Phal	3	178	261
* 428	29		480		350	Sa 3 Mar	67		Chait	4	178	262
429	30		486	Jyesh	351	We 20 Feb	58		Vaia	b	180	263
430	3531		487		552	Tu 11 Mar	59	4	Jyeah	6	181	264
431	9532		488		353	Sa 28 Feb	60	5	Ashad	7	182	265
* 432	33		489	Va1s	354	We 17 Feb	71	6	Srav	8	183	260
433	34		490		956	We 8 DIar	2	7	Bhâu	9	184	267
434	35		49.	Bhêd	936	S 25 Fcb	3	8	Aswa	10	185	2688
435	36		492		337	$\mathrm{Sa}_{\mathrm{a}} 16 \mathrm{Mar}$	4		Kârt	11	186	269
* 436	37		493		358	Th 5 Mar	5	10	Agra	12	187	270
437	38		494	Ashad	359	S 21 Feb	6	11	Paush	13	188	271
438	39		495		360	Sa 12 Mar	7	12	Màgh	14	190	272
439	40		496		361	We 1 Met	8	13	Phall	15	190	273
* 40	3541		497	Jyesh	362	S 19 Feb		14	Charit	16	191	274
441	3542		498	-	363	S 9 Mar	10	15	Vals	17	182	278
442	43		498	Bhed	364	Th 26 Feb	11	16	Jyesh	18	193	276
443	44		500		365	We 17 Mar	12	17	Ashad	19	194	277
*44t	45		501		366	Mo 6 Mrr	13	18	Srâv	20	195	278
445	46		502	Brav		Fri 23 Feb	14	18	Bhad	21	196	279
446	47		503		368	Th 14 Mar	15	20	Aswa	22	197	280
447	48		504			Mo 3 Mar	16	21	Kart	23	188	281
*48	49		005	Jyeah		Fr 20 Feb		22	Agrs	24		282
449	60		506	:		Fr 11 Mar			Pansh	25		283
450	3551		507		372	Tu 28 Feb	719	6024	Magh	26	201	284
				'he								

TABLE XVII.-(Continued)

General Table of Corresponding Dates.

A D	Solar-Yeat		Lumi-Solar-Yeat				JUpitea-Cycles.					
	$\begin{gathered} \mathrm{Kal}_{1} \\ \mathbf{Y} \mathrm{mag}^{2} \end{gathered}$	Intinal Day	$\left\lvert\, \begin{gathered} \text { Fik } \\ \text { Samm } \end{gathered}\right.$	Intercal Month	$\left\|\begin{array}{c} \text { Sak } \\ \text { Sal } \end{array}\right\|$	Imital Day	60 Yeara		$\begin{gathered} 12 \\ \text { Years } \end{gathered}$			
							3 Sld	Tel				
451	3552		508	Va1a	379	Sa 17 Feb	720	6025	Phal	27	232	285
${ }_{*}{ }^{452}$	53		509		374	Sa 8 Mar	21	26	Chart	23	203	286
453	54		510	Bhad	375	We 25 Feb	22	27	Vals	29	204	287
453	55		511		376	Tu 16 Mar	23	28	Jyesh	30	205	288
455	56		512		377	Sa 5 Mar	24	29	Ashad	31	205	288
*466	57		513	Ashad	378	Ta 21 Feb	25	30	Srày	32	207	290
457	58		514		379	Tu 12 Mar	26	31	Bhad	33	208	291
488	59		516		380	Sa 1 Mar	27.	32	Aswa	34	209	292
459	60		516	Jyesh	381	We 18 Feb	28	39	Kart	35	210	293
* 460	3861		517		382	We 9 Mar	29	34	Agra	36	211	294
461	8562		518	Bhad	383	E 28 Feb	30	35	Paush	37	212	295
462	63		519		384	Fr 16 Mar	83	36	Magh	38	213	296
463	64		620		385	We 6 Mar	32	87	Phal	34	214	297
*464	65		521	Srat	386	S 23 Feb	93	38	Chait	40	215	298
465	86		522		387	S 14 Mar	34	89	Vais	41	216	299
466	67		523		388	Th \$ Mar	35	40	Jyesh	42	217	200
467	68		524	Jyeoh	339	Mo 20 Feb	36	41	Ashad	43	215	301
-468	69		525		390	Moll Mar	87	42	Srár	44	219	302
469	70		526	\dagger	391	Fr 28 Feb	38	43	Bhâd	45	220	303
470	3571		527	Vaus	392	Tu 17 Feb	38	44	Aswa	46	221	304
471	3572		528		393	Th 8 Mar	40	45	Kart	47	222	305
*472	73		529	Bhed	394	Fz 25 Feb	41	46	Agra	48	223	306
478	74		530		895	Fr 16 Mar	42	47	Paush	48	224	307
474	75		581		896	Ta 6 Mar	43	48	Magh	50	225	30%
475	76		532	Ashad	397	Fr 21 Feb	44	49	Phal	51	226	309
${ }^{*} 476$	77		533		398	Fr 12 Mar	45	50	Chait	52	227	310
477	78		634		399	Tu 1 Mar	46	51	Vais	53	228	311
478	79		535	Jyesh	400	Sa 18 Feb	47	52	Jyesh	54	229	312
479	80		536		401	Fr 9 Mar	748	53	Aahad	55	230	318
* 480	3581		537	A8wa	402	Tr 28 Feb	- 50	6054	- bhad	56	231	314

\dagger Khruke owittod, and Earuka ivterealary

TABLIE XVII－（Continqed）
General Table of Corresponding Dates．

A．D．	Solab－Year		Lunt－Solar－Yeat．				JUpiter－Oyclirs				$\begin{aligned} & \text { 貝 } \\ & \text { 䔱 } \\ & \text { 㤟 } \end{aligned}$	宫
	$\begin{gathered} \text { Kalı } \\ \text { Yuga } \end{gathered}$	Initıal Day	$\left\|\begin{array}{c} V_{i k} \\ S_{\mathrm{sim}} \end{array}\right\|$	Interoal Month	$\left\|\begin{array}{l} \text { Bak } \\ B_{\text {al }} \end{array}\right\|$	Intial Day	60 Years．		$\begin{aligned} & 12 \\ & \text { Yeari. } \end{aligned}$			
							S Sid	Tel				
481	3582		5381	－	403	Tu 17 Mar	781	6055	Anwa	57	232	815
432	83		5391		404	Ss 6 Mar	82	＊ 6	Klrt	58	258	816
488	34		540	Srtv	405	We 23 Feb	53	57	Agra	58	234	317
＊ 484	88		641		406	We 14 Mar	64	58	Panah	60	235	318
485	85		542		407	3 Mar	55	59	Magh	61	236	818
486	87		543	Jyesh	408	Th 20 Feb	86	60	Phal	62	23：	320
487	88		544	．．	409	We 11 Mar	67	611	Chast	63	238	821
＋488	88		545	\dagger	410	Mo 28 Fbb	68	2	Vara	64	238	822
489	90		546	Chast	411	Fr 17 Feb	69	3	Jyeah	65	2 ± 0	823
400	3591		847		412	Th 8 Mar	60	4	Ashad	66	241	324
401	3502		548	Bhed	418	Ko 25 Feb	81	5	Srav	67	242	325
${ }^{4} 492$	93		549		414	Mo 16 Mar	2	6.	Bhâd	68	243	826
493	94		850		415	Fr 5 Mar	8	7.	Aswa	69	244	327
494	95		651	Ashad	416	Mo 21 Feb	4	8	Kart	70	245	328
496	96		552		417	8 12 Mar	5	9	Agre	71	246	529
＊ 496	97		S53		418	Fr 1 Mar	6	10	Pranh	72	247	880
497	98		554	Jyeah	418	Ta 18 Feb	7	11	MAgh	73	248	381
498	90		558		420	Mo Mar	8	12	Phal	74	248	392
409	3600		556	A\％wa	421	Fr 26 Feb	8	18	Chat	75	250	388
－ 500	8601		657		422	Fr 17 Mer	10.	14	Vals	76	261	384
801	3602		558		428	Tu 6 Mar	11	15	Jjosh	77	252	838
802	03		559	Ashed	424	Ba 23 Feb	12	10	Ashed	78	253	886
808	04		560		425	Fr 14 Mar	13	17	Srav	78	254	837
－ 804	05		561		426	We 3 Mar	74	18	Bhid	80	255	388
805	08		562	Jyenh	427	G 20 Feb	15	19	Aswa	81	256	389
508	07		563		428	Sa 11 Mer	16	20	Kart	82	457	340
807	± 08		564	Phal	428	We 28 Feb	17	21	Agra	83	258	341
${ }^{+608}$	08		565		430	We 19 Mer	18	22	Parah	84	258	342
509	10		866	．	481	58 Mar	19	23	Magh	85	260	348
510	8611		567	Sray	432	Th 25 Feb	820	81.24	Phal	36	261	844

\＄Pasikn omitred，and Kiatike intarcalary．

GRNERAL TABLE OF COREESPONDING DATES，
TABLIE XVII．－（Continued．）
General Table of Corresponding Dates

A D	Solar－Year		Luni－Solam－Yeab				Jupitite－Cycles，			$\begin{aligned} & \text { 気 } \\ & \text { 品 } \\ & \text { 苟 } \\ & \text { 荗 } \end{aligned}$	$\begin{aligned} & \text { 息 } \\ & \frac{1}{t} \\ & \frac{5}{3} \end{aligned}$	感
	$\begin{aligned} & \text { Kall } \\ & \text { Yuga } \end{aligned}$	Initial Day	Vik Sam	Intercal Month	$\left\lvert\, \begin{aligned} & \mathrm{Sak} \\ & \mathrm{Sal} \\ & \hline \end{aligned}\right.$	Initisal Day	60 Yeals		$\underset{\text { Yearb }}{12}$			
							＊Sid	Tel				
511	3612		568		433	We 16 Mar	821	6125	Chalt	87	262	81
＊512	13		569		434	Mo 5 Mar	22	26	Vals	88	269	846
518	14		570	Ashbd	435	Th 21 Feb	23	27	Jyesh	89	264	347
814	15		571		436.	We 12 Mar	24	28	Ashad	90	265	348
515	16		5721		437	S 1 Mar	25	29	Srâv	91	266	349
＊ 816	17		573	Va18	438	Th 18 Feb	26	30	Bhäd	92	267	880
517	18		574		439	Th 9 Mar	27	31	Abwa	93	268	351
618	19		675	Bluad	440	Mo 28 Feb	28	32	KGrt	94	269	352
519	20		576		441	S 17 Mar	29	33	Agra	95	270	358
＊ 220	8621		677		442	Fr 6 Mar	30	34	Pauah	96	271	354
621	3622		578	Ashad	449	Tu 29 Fel	31	35	Magh	97	272	355
522	23		579		444	Th 14 Mar	32	36	Phal	98	273	356
623	24		580		445	Fr 3 Mar	33	37	Chast	99	274	867
＊524	25		581	Jyeah	446	Tu 20 Feb	34	38	Vass	100	275	358
625	26		582		447	Tu 11 Mar	85	39	Jyesh	1	275	369
526	$\dagger 27$		583	Phal	448	Sa 28 Feb	36	40	Ashad			380
527	28		584		449	Fr 19 Mar	37	41	Srâv		278	361
＊528	29		585		450	We 8 Mar	38	42	Bhid		279	362
529	30		586	Srav	451	S 28 Feb	39	43	Aswa		280	363
530	3631		587		452	Sa 16 Mar	40		Kêrt			364
581	3632		588		453	We 5 Mar	41	45	Agra	7		365
${ }^{\circ} 532$	33		589	Ashad	454	Sa 21 Feb	42	45	Paush	8		855
533	34		590	－	455	Sa 12 Mar	43	47	Magh	9		$\mathbf{8 6 7}$
534	35		591.		406	We 1 Mar	4	48	Phal	10		368
535	36		692	Vass	457	S 18 Feb	45	49	Chat	11		369
＊${ }^{\text {¢ }} 36$	37		593！		458	S 9 Mar	46	50	Vn1s	12		370
597	98		594	Bhad	459	Th 26 Feb	47	51	Jyesh	13		371
538	39^{1}		595		460	We 17 Mrs	48	52	Aehad	14		372
639	40		596		461	56 Mar	49		Sráv	15.		878
${ }^{5} 50$	3641		597	Ashad	462	Th 23 Frb	850	8154	Bhad	16	291	874

† Agraliayana omilted，and Kartika antercalary

TABLE XVII－（Continued．）
Gener al Table of Corresponding Dates．

A D	Solar Year		Lumi－Solar Year				Jupiter－Cycles			$\begin{aligned} & \text { 㤟 } \\ & \text { 令 } \\ & \text { 茄 } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { E } \\ & \text { W } \\ & \text { 品 } \\ & \mathbf{D} \end{aligned}$	$\begin{aligned} & \text { a } \\ & \text { a } \\ & \text { E. } \end{aligned}$
		$\begin{aligned} & \text { Initial } \\ & \text { Day }^{\text {In }} \end{aligned}$	$\left\|\begin{array}{l} \text { Vik } \\ \text { Sarm } \end{array}\right\|$	Intercal Mouth	$\begin{aligned} & \text { Salk } \\ & \text { Sal } \end{aligned}$	Initarl Dey	60 Years		$\underset{\text { Years }}{12}$			
							S Sid	Tel．				
541	8642	19 Mar	598			Th 14 Mar	851	8156	Aswa	17	292	375
542	43	19 －	599		464	Mo a Mar	［2）	5 Cl	Kurt	18	293	376
543	44	$19-$	600	Jyeah	465	Fr 20 Feb	53.	571	Agra	19	294	s－7
＊544	45.	19 －	601		466	Fr 11 Mar	64	58	Paush	20	295	378
545	＋46	19 －	602	Phal	46.7	We 1 Mar	50	59.	Magh	21	296	379
546	47	$19-$	603			Mo 19 Mar	66	60	Pbul	22	297	380
547	48	19 －	604			Fr 8 Mar	57	821	Chait	23	298	381
＊ 648	49	19	605	Stay		We 2f Feb	58	2	Vals	24	294	38.2
549	50	19 －	606		471	Tu 16 Mar	50	3.	Jychh	25	300	383，
550	3651	19 －	607		47 ）	Sa 0 Mar	co	4	Asluad	26	301	384
561	3652	10 Mar	608	Ashad	47＇3	We 22 Feb	81	5	Srav	27	302	386
＊682	53	19 －	609		4.4	We ls Mar	2	6	Bhâd	28	303	386
603	54	19 －	610		175	S 2 Mar	3	7	Aswa	29	304	387
554	55	19 －	611	Vass		Th 19 Fcb	4	8	Kurt	30	308	388
855	56	19 －	612			Tu 9 Mar	5	9	Agra	31	306	389
＊ 5 56		19 －	613	Bhad	478	S 27 Feb	6	10	Paush	32	307	390
557	58	19 －	614		479	Sa 17 Mar	7	11	Mugh	33	308	391
568	59	19	618			Th 7 Mar	8	12	Phal	34	309	392
859	60	19 －	616	Ashad	481	Mo 24 Feb	9	13	Chat	35	310	393
${ }^{\text {－580 }}$	3661	19 －	617		482	S 14 Mar	10	14.	Vais	36	311	334
661	3062	19 Mar	618		487	Th 3 Mar	11	15	Jyeerh	37	812	398
562		19 －	619	Jyesh	484	Fr 21 Feb	12	16	Ashad	38	313	396
563	61	$19-$	620		485	S 11 Mar	13	17	Srât	99	314	397
＊ 684	$\ddagger 65$	19－	621	Aswa	486	Fr 29 Feb	14	18	Bhad	40	315	398
565	66	$10-$	622		487	Th 19 Mar	－16	19	－Kart	41	316	399
566	67	19 －	623 ．		488	Mo 8 Mar	17	20	Agra	± 2	317	400
567	68	19 －	$62+$	Srav		Fr 25 Feb	18	21	Paush	43	318	401
＊568		19 －	625			Fi 16 Mar	19	22	Magh	44	319	402
569	70	$19-$	626		491	Tu E Mar	20	27	Phâl	45	320	403
570	3671	$19-$	627	Jyesh	492	2 Fr 21 Feb	021	6224	Chart	46	321	404

[^53]TABLTE XVII－（Continued．）
General Table of Corresponding Dates．

A．D	Soumb－Yeab		Lumi－Somar－Year．				JUPITER－CxCLES．				$\begin{aligned} & \text { 息 } \\ & \text { © } \\ & \text { 营 } \\ & 8 \end{aligned}$	$\begin{aligned} & \text { 렴 } \\ & \text { 音 } \end{aligned}$
	$\underset{\text { Kali }}{\text { Kaga }}$	Inftial Day．	$\left\|\begin{array}{c} \text { Fik } \\ \text { Sam } \end{array}\right\|$	Intercal Month	$\left\lvert\, \begin{aligned} & \mathrm{gar} \\ & \mathrm{Sal} \\ & \hline \end{aligned}\right.$	Initial Day	80 Yeari		$\begin{gathered} 12 \\ \text { Yawn. } \end{gathered}$			
							S Bid．	Tel．				
871	8872	20 Mar	628		493	Fr 18 Mar	O22	6228	Fais	47	822	
＊ 672	78	19 －	629	－	494	We 2 Mar	23	26	Jyenh	48	328	
878	74	19 －	630	Vais	498	Ss 18 Feb	24	27.	Anhad	49	324	40
674	78	19 －	631		496	Fr 9 Mar	28	28	Brav	80	325	
575	76	$20-$	682	Bhad	497	We 27 Feb	26	29	Bhed	51	826	
－ 676	77	$20-$	683		498	Ta 18 Mar	27	80	Aawn	52	327	
577	78	19 －	394		490	Ss 6 Msr	28	81	Kart	88	328	
878	79	$20-$	688	Ashad	800	Th 24 Feb	29	82	Agra	54	829	
579	80	$20-$	688		801	We 15 Mar	30	83	Panah	88	380	
－880	8581	19 －	837		802	88 Mar	81	84	Magh	58	831	
581	8682	18 Mar	638	Vais	603	Th 20 Feb	82	85	Phal	67	352	
582	83	$20-$	838		504	Th 12 Mar	38	86	Chalt	88	838	41
888	84	$20-$	640	（ Bhad	508	S． 27 Feb	84	37	Van	69	884	
－884	85	$10-$	11		506	519 Mar	35	38	Jyenh	30	885	4
888		$20-$	642		507	F 9 Mar	86	89	Anhad	61	886	
586	87	$20-$	643	Srây	508	Ta 26 Feb	37	40	Brât	62	897	
887		$20-$	644		509	S 16 Mar	88	41	Bhad	63	838	
－ 888		$19-$	645		810	Fr 6 Mar	89	42	4．wn	64	889	
589	80	$20-$	648	Jyesh	511	Mo 21 Feb	40	48	Elat	85	840	
890	8891	$20-$	847	．．．	512	Mo 18 Mar	41	44	Agra	66	841	
891	8682	20 Mar	648		818	Fr 9 Mar	42	46	Pauch	87	842	
－892	98	$19-$	649	Vade	514	Tz 19 Feb	43	48	Magh	68	848	
598		18 －	680		815	Mo 9 Mar	44	47	Phll	69	844	
594	95	$20-$	351	Bhad	516	Sa 27 Feb	45	48	Chait	70	848	
895		$20-$	652		517	F． 18 Mar	48	49	Vais	71	848	
－ 598	97	$19-$	683	3	518	Tr 8 Max	47	80	Jyeah	12	847	
597	98	$19-$	634	Ashad	619	Ba 23 Feb	48	81	Anhed	78	848	
598	99	$20-$	858		620	8s 15 Mar		82	Brat	74	8.9	
699	3700	$20-$	858	3	521	We 4 Mar		58	Bhad	75	880	
－600	8701	19 －	867	7 Tald	522	Sn 20 Fab	981	$62 \mathrm{B4}$	Aswa	75	851	

WABLET XVII-(Oontinved.)

General Table of Corresponding Dates

A. D.	Solab-YEAR		Luni-solab-Yram				Jupiter-Cicleis			$\begin{aligned} & \dot{\overrightarrow{0}} \\ & \text { 覓 } \\ & \stackrel{\rightharpoonup}{0} \\ & \dot{B} \end{aligned}$		鹿
	$\left.\begin{array}{\|} \text { Kall } \\ \text { Yagan. } \end{array} \right\rvert\,$	Initial Day	$\left\|\begin{array}{l} V i k \\ s_{\mathrm{am}} \end{array}\right\|$	Interoal Month.	$\left\|\begin{array}{c} \mathrm{Bak} \\ \mathrm{Bal} \end{array}\right\|$	Inital Day	60 Years		$\underset{\text { Yeara }^{12}}{ }$			
							5 Srd	Tel				
001	8702	20 Mar	656	-	528	Sa 11 Mer	952	6285	Kert	77	352	
602	03	$20-$	659	Bhad	624	We 28 Feb	53	SE	Agra	78	853	
608	04	$20-$	660		528	Tı 19 Mar	64	6:1	Paush	79	354	
${ }^{-604}$	05	19 -	651		528	88 Mar	65	58	Magh	80	$8 s s$	
605	06	$20-$	562	BrAv	527	Fr 26 Feb	66	69	Ph6l	81	356	
606	07	$20-$	668		528	Wo 16 Mar	57	60	Chalt	82	357	0
607	06	$20-$	664		529	S 6 Mar	68	831	Va1s	83	358	1
-608	09	$10-$	668	Jyeah	680	We 21 Feb	69	2	Jyesh	84	689	2
609	10	18 -	666		531	Wo 12 Mar	60	8	Ashad	85	B60	6
610	6711	$20-$	667	\dagger	632	Mo 2 Max	101	4	Brâv	86	981	4
611	6712	20 Mar	666	Vain	839	Th 16 F (0b	2	6	Bhad	87	862	6
-612	18	19 -	869		694	Th 9 Mar	6	6	Aswa	68	868	6
818	14	$20-$	670	Bhad	668	Mo 28 Feb	4.	7	Kirt	69	864	7
614	18	$20-$	671		638	Mo 18 Mar	6	8	Agte	90	868	8
616	16	$20-$	672		687	5 S Mar	6	0	Paush	91	888	9
*616	17	19 -	678	Ashad	538	Tu 24 Feb	7	10	Magb	82	567	10
617	16	$20-$	67t	..	638	Ta 15 Mar	8	11	Phal	93	386	11
018	19	$20-$	676		640	Es 4 Mar	9	12	Chalt	94	869	12
619	20	$20-$	676	Vain	541	Wo 21 Feb	10.	18	Vain	Es	870	16
* 620	8721	$20-$	677		842	Tu 11 Mas	11.	14	Jyenh	96	671	14
621	6782	20 Mer	676	Bhad	543	Mo 1 Mar	12	15	Anhad	97	872	16
622	98	$20-$	679	...	544	Ft 10 Mar	18	16		98	876	16
626	24	$90-$	680		648	Th 8 Mar	14	17	Bhad	90.	874	17
4824	25	19 -	861	Srdv	646	85 25 Feb	15	16	Abwa	100	678	18
626	98	$20-$	682		647	8s 16 Mar	16	19	Kırt	1	878	19
628	27	$20-$	868		548	Wo 6 Mar	17	20	Agrs	2	677	80
627		$20-$	684	Jyeah	649	(s 22 Feb	16	21	Paunh	8	376	21
${ }^{*} 626$		19 -	688		650	St 12 Mar	10	22	Magh	4	879	22
629	80	$20-$	686	\ddagger	581	Th 2 Mar	20	23	Phal	6	880	28
680	8781	$20-$	667	Chatt	662	Ta 20 Fob	1021	6324	Chalt	6	561	24

TABLIT XVII．－（Continued）
General Table of Corvespondang Dates

A 1	Solab－Yeab．		Lumi－Solar－Yram				Jupitem－CYCles．					$\begin{gathered} \text { 甫 } \\ \text { 佨 } \\ \text { 总 } \\ \text { 畐 } \end{gathered}$
	$\begin{array}{r} \text { Kalı } \\ \text { Yuga } \end{array}$	Initinl Day	$\left\|\begin{array}{c} V_{1 k} \\ S_{2} \end{array}\right\|$	Intercal Month	$\left\lvert\, \begin{aligned} & \text { Sak } \\ & \text { Sal } \end{aligned}\right.$	Initial Day	60 Years		$\underset{\text { Yearg }}{12}$			
							S Sid	Tel				
631	3732	20 Mar	688		653	We 10 Mar	1022	6325	Vals	7	382	28
${ }^{*} 632$	33	$20-$	689	Bhèd	554	Fr 28 Feb	23.	26	Jyesh	8	383	26
633		$20-$	690			We 17 Mar	24	27	Ashad	9	384	27
634	35	$20-$	601.		856.	Mo 7 Mar	25.	28	Srat	10	385	28
635		$20-$	692	Ashad	5671	Fr 24 Feb	26	29	Bbed	11	386	29
${ }^{*} 636$		20	693		858	Th 14 Mar	27	30	Aswa	12	387	30
637	38	20	694		859	Tu 4 Mar	28	31	Kärt	13	388	31
638		20	695	Va：	860	Sa 21 Feb	29	32	Agra	14	389	32
639	40	20	696		$561{ }^{1}$	Th 11 Mar	30	33	Paush	15	390	33
＊ 640	$37+1$	20	697	Bhâd	562	Tu 29 Feb	31	34	Magh	16	391	34
641	3742	20 Mar	698		563	Mo 19 Mar	32	35	Phal	17	392	35
642	43	20－	609		664	Fr 8 Mar	33	36	Cbalt	18	393	86
643	44	$20-$	700	Asbad	565	1u 25 Feb	34	37	$\nabla_{\text {a }}$	19	394	37
＊644		$20-$	701		566	Tu 16 Mar	38	38	Jyenh	20	395	38
645		20 －	702＇		50.7	Sa 6 Mar	36	39	Ashad	21	396	39
646	47	$20-$	703	Jyerht	568	We 22 Feb	37	40	Sráv	22	397	40
647		$20-$	704		5.69	Tu 13 Mas	38	41	Bhad	23	398	41
＊848		$20-$	708	Kart	570	$\mathrm{S} \quad 2 \mathrm{Mar}$	39	42	Abws	24	399	42
649		$20-$	706		671	Fr 20 Mar	40	48	Kart	25	400	43
650	3781	$20-$	707			Ta 9 MBL	42	44	－Paush	26	401	44
651	3782	20 Mar	708	Srây	873	S 27 Feb	43	48	Màgh	27	402	48
＊652	83	$20-$	708			Sat 17 Mar	44.	46	Phal	28	403	46
653		$20-$	710		575	We 6 Mar	45	47	Ohart	29	404	47
654	88	$20-$	711	Ashad	676	Mo 24 Frab	46	48	Vals	30	405	48
685		$20-$	712		877	Sat 14 Mar	47	49	Jyesh	31	406	49
＊638		$20-$	713		578	Th 3 Mar	48	50	Ashad	32	407	50
657	88	$20-$	714	Vals	579	Mo 20 Feb	49	51	Sriv	33	408	81
658		$20-$	715		880	S 11 Mar	50	52	Bhad＇	34	409	52
669	60	$20-$	716	Bh8d	581	Fr 1 Mar		53	Aswa	35	410	58
＊660	3761	$20-$			582	Th 19 Mar	1052	6354	Kert	38	411	154

TABLII XVIL-(Continued)

General Table of Corresponding Dates

TABLT XVII.-(Oontinaed.)
General Table of Corresponding Dates.

A. D	Solam-Year		LURI-SOLAz-YEAR.				Jopttre-Ctoles.					
	Kali Yuga	Initial Day	$\left\lvert\, \begin{aligned} & \nabla_{2}, \\ & \operatorname{Sam} \end{aligned}\right.$	Intereal Month	$\begin{aligned} & \mathrm{Bak}_{\mathrm{a}} \\ & \mathrm{Sanl}^{2} \end{aligned}$	Initial Day	60 Years.		$\begin{gathered} 12 \\ \text { Yoars. } \end{gathered}$			
							3 sid	Tel.				
091	8792	21 Mar	748		613	Te 7 Mar	11,29	0426	Jyeeh	67	442	88
-698	98	21	749	Ashad	614	Be 24 Feb	24	26	Lehed	56	448	86
688	94	20	780		618	Fr 14 Mar	25	27	8riv	69	444	87
694	95	20	751		616	Tz 8 Mar	96	28	Bhad	70	445	68
098	98	21	752	Ohait	617	(21 Fab	27	22	Aswe	71	448	89
- 898	97	20	753		818	S. 11 Mar	28	60	Kfrt	72	447	90
497	96	20	754	Bhad	518	Wea 28 Feb	29	81	Agra	73	448	91
698	99	21	756	.	620	Fr 19 Mar	80	82	Panah	74	448	92
099	8800	21	758		621	8s 8 Mar	81	88	Magh	75	450	88
- 700	8801	21	757	Ashad	622	W0 25 Feb	82	84	Phal	78	451	4
701	3802	21 Mar	758	...	823	Wed 16 Mar	83	85	Chait	77	452	95
702	08	21 -	759	.	629	S 5 Mar	84	80	Vain	76	458	96
703	04	21 -	760	Jyeah	825	Th 22 Feb	85	87	Jyeah	78	454	9
-704	08	$20-$	761	**	628	We 12 Mar	86	88	Achad	80	486	0
708	08	$20-$	762	Aswe	527	S 1 Mar	87	39	Brat	81	456	88
706	07	21 -	788		628	Mo 21 Mar	88	40	Bhid	82	457	100
707	08	22 -	784	.	829	Fr 10 Mar	89	41	Aswa	88	458	101
-708	09	21	765	Sriv	680	Tu 28 Fob	40	42	Kart	84	459	102
709	10	21	766		681	Ta 18 Mar	41	48	Agra	65	460	108
710	8811	21	787	-	682	Ba 7 Mar	42.	44	Paugh	86	481	104
711	8812	21 Mar	788	Jyeah	688	Mo 28 Feb	48	45	MEgh	87	482	108
-712	18	21	789		684	T\% 14 Mar	44	48	Phal	68	463	100
718	14	21	770		685	Mo 3 Mar	45	47	Chalt	69	464	107
714	15.	21	771	Chait	636	Tu 20 Feb	46	48	Vals	80	455	108
715	16	21	772	.	887	Mo 11 Mar	47	49	Jyech	01	\$60	109
*716	17	21	778	Srev	688	Fs 28 Fab	48	50	Ashad	92	467	110
717	18	21	774		689	It 10 Mar	40	51	Arav	96	468	111
716	19	21	775	...	640	Ta 83mr	80	52	Bhad	94	458	112
719	20	21	775	..	661	B4 28 Fab	81	68	Aswa	85	470	118
* 720	8821	21	777	Ashad	648	ge 18 Mar	11.52	64.64	Fert	96	471	114

TABLE XVII.-(Continued)
Gencial Tuble of Comesponding Dates

TABLE XVII-(Continued.)
General Table of Corresponding Dates

[^54]TABLE XVII -(Continued.)
General Table of Cor responding Dates.

A. D	Solar Year		Lujxi-Solar Yeam.				Juptran-Cioles					
	$\begin{gathered} \text { Kalı } \\ \text { Yuga } \end{gathered}$	Initial Day	$\left\{\begin{array}{l} V_{1 k} \\ \mathrm{Sam} \end{array}\right.$	Intercal Month	$\left\lvert\, \begin{aligned} & S_{\text {ak }} \\ & S_{81} \end{aligned}\right.$	Inital Day	60 Years		${ }_{\text {Years }}^{12}$			
							(8 S S_{1}	Tel				
781	3882	21 Mar	838	Bhid	703	Th 1 Mar	1254	65 55	Paurh	87	b32	175
782	83	21 -	839		704	We 20 Mar	58	56	Mâgh	58	533	176
783	84	$22-$	840		705	S 9 Mar	56	B7	Phil	59	584	177
*784	85	21 -	811	Ashad	706	Th 26 Feb	57	B8	Chait	50	535	178
785	86	$21-$	842		70%	Th 17 Mar	58	59	Vaia	61	E36	179
786	87	21 -	843		708	Mo B Mar	59	60	Jyeah	52	537	180
787	88	$22-$	844	Jyesh	709	Sa 24 Feb	60	681	Aahnd	63	538	181
*788	89	21 -	815		710	Th 13 Mar	131		Briv	64	839	182
789	90	21 -	846	Aswa	711	Th 3 Mar		8	Bhàd	65	540	183
790	3891	21 -	81.1		712	S 21 Mar			Aswa	66		184
791	3892	21 Mar	848		713	Th 10 Mar	4	5	Kîrt	67	542	185
-702	93	22-	849	Srav	714	Wo 29 Feb	5	6	Agra	68	543	186
793	94	21 -	850		716	Mo 18 Mar	6	7	Paush	69	544	187
794	95	22 -	851		716	Sa 8 Mar	7	8	Mâgh	70	545	188
798	96	$22-$	852	Ashad	717	We 25 Feb	8	9	Phal	71	545	189
*796	97	21 -	857		718	Tu 15 Mar	9	10	Chait	72	547	190
797	98	21 -	854		719	8 A (Mar	10	11	Vais	73	648	191
798	99	21 -	885	Vars	720	We 21 Feb	11	12.	Jyesh	74	549	192
799	8900	$22-$	856		721	Tu 12 Mar	12	13	Ashad	78	S50	193
*800	3901	21 -	857.	Bhâd	722	32 Mar	13	14	Srêy	76	551	194
801	3902	21 Mar	858		723	Sa 20 Mar	14	15	Bhad	77	652	195
802	03	21-	889		724	We 9 Mar	15	18	Aswa	78	553	196
803	$0 \pm$	22 -	860	Ashad	75	Mo 27 Feb	16	17.	Kart	78	B54	197
*804	05	$21-$	861		726	Sa 16 Mar	17	18	Agrs	80	BEE	198
$80 \overline{ }$	06	21 -	852		727	We δ Mar	18	19	Paush	81	556	109
806	07	$22-$	868	Jyesh	728	Mo 23 Feb	19	20	Magh	82	857	200
807	08	22 -	864		729	S 14 Mar	20	21	$\mathrm{Ph}{ }^{\text {ct }}$	83	558	201
-808	09	$21-$	865	Aswa	790	Th 2 Mar	21	22	Chait	84	589	202
809	10	21 -	866		781	We 21 Mar		23	Vais	85	560	208
810	8911	$22-$	857		732	Mo 12 Mar	1323	0824	Jyerh	88	561	204

TABLE XVII -(Continued.)

General Table of Corresponding Dates

\triangle D	Solah Year		Tumi Solar Yeam				Jupiren Cyclas					Harsha Kâl
	$\begin{gathered} \text { K.alı } \\ \text { Yuga } \end{gathered}$	$\begin{gathered} \text { Initial } \\ \text { Day } \end{gathered}$	$\left\|\begin{array}{l} \mathrm{Vik} \\ \mathrm{Sam} \end{array}\right\|$	Interoal Month	$\left\|\begin{array}{c} \mathrm{Saik}^{2} \\ \mathrm{Sal} \end{array}\right\|$	Intiaı Day	$66^{\text {6 }}$ Years		$\underset{Y \text { Bars }}{12}$			
							S Sud	Tel				
811	3912	22 Mar	868	Srấ	733	Fr 28 Feb	1324	6825	Asbad	87		205
* 812		21 -	869		734	Th 18 Mar	25	26	Srav		563	206
818	14	$21-$	870		735	Mo 7 Mar	26	27	Bhâd		564	207
814	15	$21-$	871	Ashad.	736	Er 24 Feb	27	28	Asws	90	565	208
815	16	22 -	872		737	Fr 16 Mar	281	29	Kurt	91	566	205
* 816	17	$22-$	873	-	7381	We 6 Mar	29^{\prime}	30	Agra	92	665	210
817	18	$21-$	874	Vals	739	Sa 21 Feb	30	31	Paush	9:	508	211
818	19	$22-$	875		740	Sa 13Mat	31	32	Magb	94	569	212
819	20	$22-$	876	Bhad	741	We 2 Mar	32	$3{ }^{3}$	Phul	95	570	213
*820	3921	21 -	877		742	Mo 19 Mar	84	31	Yals		571	214
821	5922	21 Mar	878		743	Sb OMal	$3)$	33	Jyesh	97	572	218
822	23	$22-$	874	Ashad	714	Th 27 Fcb	36	36	Ashad	98	573	216
823	24	22 -	880		740	Tu 17 Mm	77	37	Sruy		-374	217
-824	25	21 -	881		746.	Sa 6 Mar	38	38	Brad	100	575	218
825	26	21 -	882	Jyesh	747	Th $23 \begin{aligned} & \text { r }\end{aligned}$	30	30	Aswa		576	219
826	27	22 -	883		748	We 14 Mat	40	40	Kurt		875	220
827	28	22 -	884	4 Ashad	749	S 3 Mar	41	41	Agra		578	221
* 828	29	22 -	885		750	S 22 Mai	42	42	Pausb		570	222
820	30	21 -	886		$7 \mathrm{~F}_{1}$	We 10 Ma	43		Magh		560	223
830	9981	28 -	887	Sı自v	532	Mo 28 Гeb	44	44	Phal			224
831	3032	22 Mar	888		733	319 Mar	45	45	Chast		582	220
*832	33	22 -	889		754	Tr 8 Mar	5	46	$\mathrm{V}_{\mathrm{n} 1 \mathrm{~s}}$		8. 583	
893	34	$22-$	890	Ashad	\%is)	Tu こ; $\Gamma_{\text {¢ }}$	4	47	Jyebh		684	227
834	35	22 -	801		760	No 16 Mar	48	4 N	Ashad		585	228
835	36	$22-$	$\mathrm{SO2}$		752		49	4	Sump	11	586	
*886	87	22 -	893	3 Chatt	75	Wr 23 Feb	50	8	Bhâd		587	' 230
837	38	$22-$	894		759	Mo 12 Max	51	61	Asive		588	231
838	39	$22-$	805	Srav	760	Fr 1 Mnr	52	52	Kîrt		580	232
889		$22-$	896		761	Th 20 Mnr	53		Agra			233
* 840	8941	21 -	897	.	762	Mo 8 Mar	1354	66 E4	Paush		501	234

TABLE XVLI -(Continued)
General Table of Corresponding Dates

TABLE XVII－（Continued．）
General Table of Corresponding Dates．

A D	Solar Year		Luni－Solar．Year				Jupimer－Gyoles．				$\begin{aligned} & \text { 总 } \\ & \text { 另 } \\ & \text { 券 } \end{aligned}$	
	$\left\|\begin{array}{c} \text { Kaha } \\ \text { Yuga } \end{array}\right\|$	Initial Day	$V_{1 k}$ Sam	Intercal Month	Sak Sal	Intial Day	60 Years		${ }_{Y e a r s}^{12}$			E
							S Sid	Tel				官
871	3072	22 Mar	928	Jyesh	793	Sa 24 Feb	1425	6725	$\mathrm{Sr} \mathrm{Sv}^{2}$	47	822	28
＊872	73	22 －	920		704	Sa 15 Mar	26	26	Bhad	48	628	26
873	74	22 －	030		795	We 4 Mar	27	27	Abwa	49	624	26
874	75	$22-$	931	Chait	796	Mo 22 Feb	28.	28	Kât	50	625	268
875	76	22 －	932		797	Tu 12 Mar	29	29	Agra	51	626	88
＊876	77	22－	933	$\mathrm{Sr} \mathrm{H}_{7}$	798	Th 1 Mar	30	30	Paneh	52	827	270
877	78	22 －	934	．．		We 20 Mar	31	31	MAgh	58	828	271
878	79	22 －	935	．．	800	$3 \quad 9 \mathrm{Mar}$	32	32	Phal	54	629	72
879	80	22 －	336	Ashad	801	Th 26 Feb	39	83	Cbait	56	630	73
＊ 880	3981	22	937		802	We 16 Mar	34	84	Vass	56	831	274
881	3082	22 Mar	938		809	Mo 6 Mar	35	36	Jyesh	57	632	275
882	83	22 －	939	Ve18	804	Fr 23 Feb	36	36	Asbad	58	638	276
889	84	22－	40		80%	We 13 Mar	37	87	Sray	59	634	277
＊884	80	$22-$	11	Bhend	806	Tu 3 Mar	38	38	Bhâd	60	085	278
885	86	22 －	942		807	521 Mar	39	39	Aswa	62	636	78
886	87	22 －	943		808	Th 10 Mar	40	40	Kalt	62	637	80
887	88	22 －	944	Srív	09	Mo 27 Feb	41	41	Agra	68	638	81
＊888	80	22 －	945		810	Mo 18 Mur	43	42	Paush	64	639	282
880	90	22 －	6			Fr 7 Mar	43	43	Magh	68	640	88
890	3991	22 －	947	Jyeeh		Tu 24 Feb	44		Phal	66	611	284
891	3992	22 Mar	948		813	Mo 15 Mar			Chart	67	642	285
＊802	93	$22-$		\dagger	4	Sa 4 Mar	46	46	Vois	68	3	86
899	94	22 －	950	Chart	815	We 21 Feb	47		Jjesh	69	＋	287
894	－	22	951		816	Fr 12 Mar	48	48	Ashad	70	645	288
890	96	22 －	952	Sraf	817	Sa 1 Mar	40	49	Srâr	71	646	80
＊896	97	22	953			Sa 20 Mar	50	50	Bhâd	72	647	290
897	98	22 －	95.4			We 9 Mar	51	51	Aswa	78	648	291
898	99	22 －	955	Ashad		$\mathrm{S} \quad 26 \mathrm{Feb}$	53	52	Kart	74	640	292
899		$23-$	956			Sa． 17 Mar			Agra	75	650	298
＊900	4001	$23-$	957			We 6 Mar	1454	6751	Paubh	76.	681	20

\dagger Kertika omuted，und EZruka iutercalary．

TABLㅉ XVII－（Continued）

General Table of Corresponding Dates

A D	golar－Year		Luni Solar Year				Jupiter Cycles			$\left\|\begin{array}{c} \text { 娄 } \\ \text { 关 } \\ \text { 费 } \\ 0 \end{array}\right\|$		
	$\begin{array}{r} \text { Kalı } \\ \text { Yuga } \end{array}$	Initial Dey	$\left\|\begin{array}{c} \nabla_{1 k} \\ S_{a m} \end{array}\right\|$	$\begin{array}{\|l\|} \text { Intercal } \\ \text { Month } \end{array}$	$\left\|\begin{array}{l} \mathrm{Sak}^{\mathbf{8 a l}} \mid \end{array}\right\|$	Initual Day	60 Years		$\underset{\mathrm{Yetlls}}{12}$			
							S S ${ }_{\text {d }}$	Tel				
901	4002	22 Mar	958	Vels	823	S 22 Feb	145	6756	Magrh	7	652	$20 i$
902	03	23 －	959		82－1	S 14 Mar	E6	6 E	Phal	78	633	29
903	04	23 －	960	Bhad	823	Th 3 Mar	87	67	Chast	79	654	247
＊904	05	22 －	961			We 21 Mar	58		Vala	80	G0\％	298
808	06	22 －	962			S 10 Mar	co		－Ashad	81	Ging	299
906	07	$23-$	963	Srây	828	Fr 25 Feb	$15 \quad 1$	60	$\mathrm{S}_{1} \mathrm{~A} \mathrm{~V}$	82	657	800
907	08	$23-$	964		829	Th 19 Mar		681	Bbid	83	658	301
＊908	09	22 －	960		830	Mo 7 Mar	3		Aswa	84	658	302
909	10	22 －	966	Jyech	831	Fr 24 Feb	4	3	Kârt	85	660	303
910	4011	23	967		832	Th 16 Mar	5	4	Agra	86	661	304
911	4012	23 Mar	968	\dagger	833	Tu 6 Mar	6	5	Paush	87	662	305
＊912	13	22 －	969	Chart	834	S 23 Feb	7	6	Megh	88	663	306
913	14	$23-$	970		8π	$\mathrm{S}_{8} 13 \mathrm{Mar}$	8	7	Pbal	80	COt	307
914	15	22 －	971	Srẫ	830	Tu 1 Mar		8	Cbart	00	665	308
915	16	23 －	972		877	Mo 20 Mar	10	0	Vais	01	660	300
＊916	17	22 －	973		888	Fr 8 Mar	11	10	Jyesh	02	67	310
917	18	22 －	971	Ashad	830	Tu 25 Feb	12	11	Ashad	93	c68	11
918	19	22 －	975		840	Mo 16 Mar	13	12	Stip	94	668	812
919	20	23 －	976		841	$\mathrm{Sa} \quad 6 \mathrm{Mar}$	14	13	Bhad	95	670	813
＊920	4021	22 －	977	Vais	842	We 23 Feb	18	14	Abwa	06	671	814
921	4022	22 Mar	978		843	Tu 13 Mar	16	15	Kärt	97	672	3100
922	23	22 －	979	Bhâd	84t	$\mathrm{Sa} \quad 2 \mathrm{Mar}$	17	16	Agra	98	678	316
923	24	$28-$	980		845	Ba 22 Mar	18	17	Paush	09	674	317
＊924	25	$22-$	983		846	We 10 Mar	10	18	Mâgh	100	675	318
925	26	22 －	982	Ashad	817	S 27 Feb	20	19	Phal	1	670	910
926	27	22 －	983		848	Sa 18 Mar	21	20	Chait		677	320
927	28	$23-$	884		849	Th 8 Mal	22	21	Vass	8	678	321
＊928	20	22 －	985	Jyeah	850	Mo 25 Feb	23.	22	Jyenh	4	679	322
929	30	22 －	986		851	Sa 14 Mar			Ashad		680	328
930	4031	22 －	987	Aswa	852	Th 4 Mar	1625	6824	Srav	6	681	824

TABLI XVII - (Continued)

General Table of Connesponding Dates.

A D	Solar-Year		Luni-Solar-Year				Jupiter-Cycles				$\begin{gathered} \text { 震 } \\ \text { 总 } \end{gathered}$	Harsha Kal
	$\left\lvert\, \begin{gathered} \text { Kalı } \\ \text { Yuga } \end{gathered}\right.$	$\begin{aligned} & \text { Initial } \\ & \text { Day } \end{aligned}$	$\left\|\begin{array}{c} \text { Vik } \\ \text { Sam } \end{array}\right\|$	Intercal Month	$\underset{\substack{S_{a k} \\ S_{a l}}}{ }$	Inital Day	60 Years		$\begin{gathered} 12 \\ \text { Years } \end{gathered}$			
							S Sid	Tel				
931	4032	23 Mar	988		853	We 29 Mar	1526	6825	Bhàd	7	682	720
-932	33	23 -	989		854	Mo 12 Map	27	26	Aswa	8	683	326
931	34	$22-$	990	Srî̀	855	Fr 1 Mar	28	27	Kart		684	327
934	35	23 -	991		856	Th 20 Mar	29	28	Agra	10	68\%	328
935	36	29 -	992		857	Mo 9 Mar	30	29	Paush	11	686	329
*936	37	$23-$	943	Ashad	878	Sa 27 Fcb	31	30	Magh	12	687	330
937	38	$22-$	994		859	Th 16 Ma	92	31	Phal	13	688	331
938	39	$23-$	995		860	Tu 6 Maz	33	32	Cbait	14	689	832
939	40	$23-$	996	Va1s	861	Sa 29 Fcb	31	33	Vals	15	690	33.
-980	4041	22 -	997		862	Fr 13 Mar	35	34	Jyesh	16	691	334
941	4042	22 Mar	998	Bhad	863	Tu 2 Mar	36	35	Aghad	17	692	335
942	43	23 -	999		$86 t$	Mo 21 Mar	37.	30	Srât	18	b)3	330
943	44	$23-$	1000		865	Fr 10 Mal	38	37	Bhad	19	694	337
*944	48	22 -	1001	Ashad	866	We 28 Feb	39	38	Aswa	20	695	348
945	46	28 -	1002		867	Tu 18 Mar	40	39	Kart	21	696	339
946	47	23 -	1003		868	57 Mar	41.	40	Agra	22	697	940
947	48	23 -	1004	Jyesh	869	We 24 Feb	42	41	Paush	23	698	341
*948	49	22 -	1005		870	Mo 14 Mar	43	42	Mâgh	24	699	342
949	50	22 -		Aswa	871	Sa 3 Mar	44	49	Phál	25	700	343
950	4051	$23-$			872	Sa 23 Mar		44	Chalt		701	344
951	4052	23 Mar	1008	.	873	We 12 Mar	46	45	Vals	27	702	34
*952	53	22 -	1009	Srav	874.	S 29 Feb	47	46	Jyeah	28	703	346
953	54.	22 -	1010		875	Sa 19 Mar	48	47	Ashed	29	704	947
954	55	$23-$	1011		876	Th 9 Mar	49	48	Srav	30	705	-348
955	56	23 -	1012	Jyeah	877	Mo 26 Feb	50	49	Bhed	31	706	349
*956	57	$22-$	1013	**	878	S 16 Mar	51	50	Aswe	32	707	7350
957	58	$22-$	1014		879	Th 5 Mar	52	51	Kart	83	708	851
958	59	23 -	1015	Vais	880	1u 23 Feh	53	52	Agra	84	709	952
959	60	$23-$	1016		881	Mo 14 Mar	54	58	Paueh	35	710	353
*960	4061	$22-$	1017	Bheid	882	Fr 2 Mer	1555	6854	Magh	36	711	354

General Table of Corresponding Dates

TABLE XVII.-(Oontinued.)
General Table of Corresponding Dates

A. D	Solam-Year.		Lunt-Sonar Yeab				Jupiter-Cyclea,					
	$\begin{gathered} \text { Kalı } \\ \text { Yuga } \end{gathered}$	Intial Day	$\left\{\begin{array}{l} V_{1 k} \\ \text { Samm } \end{array}\right.$	Intercal Month	$\left\|\begin{array}{l} S_{s k} \\ \text { Sal } \end{array}\right\|$	Initial Day	60 Years		$\begin{gathered} 12 \\ \text { Years } \end{gathered}$			
							S Sid	Tel				
991	4082	23 Mar	10 ± 8		913	Th 19 Mar	1827	8925	Abwa	67	742	38
-992	93	28 -	1049		914	Ta 8 Mar	28	26	Kart	68	743	86
293	94	$23-$	1050	Jyoub	915	$\mathrm{Sa}_{4} 25 \mathrm{Feb}$	29	27	Agra	69	744	887
994	95	23 -	1051		916	Fr 18 Mar	30	28	Paush	70	748	388
995	96	$23-$	1052		917	We 6 Mar	81	29	Mâgh	71	748	88
*996	97	$23-$	1053	Chait	918	Mo 24 Feb	82	80	Phal	72	747	0
997	98	$23-$	1054			8a 13 Mar	83	81	Chart	79	748	391
998	99	$23-$	1055	Briv	920	We 2 Mar	34	82	Vass	74	749	92
999	4100	$23-$	1058		921	Tu 21 Mar	85	83	Jyesh	75	750	393
*1000	4101	23-	1087		922	S 10 Max	36	84	Ashad	78	751	394
1001	4102	23 Mar	1058	Achad	923	We 26 Feb	87	85	Brav	77	752	895
1002		$23-$	1089		924	We 18 Mar	88	86	Bhad	78	753	396
1003	04	$23-$	1060		02\%	57 Mar	89	87	Aswa	79	754	307
${ }^{*} 100 \pm$	06	23 -	1061	Fais	926	Fr 25 Feb	40	88	Kart	80	755	398
1005	06	$23-$	1062		927	Th 15 Mar	41	89	Agra	81	756	399
1008	07	23 -	1063	Bhad	928	Mo 4 Mar	42	40	Paush	82	757	00
1007	08	$23-$	1064		929	Sa 22 Max	43	41	Magh	83	758	401
${ }^{*} 1008$	09	$28-$	1065		930	Th 11 Mar	44	42	Phal	84	752	402
1009	10	$23-$	1066	Sriv	931	Mo 28 Feb	48	43	Chait	85	760	403
1010		$23-$	1067		932	S 19 Mar	46	44.	Vain	86	761	404
1011	4112	23 Mar	1088						Jyebh	87	762	405
*1012		$23-$	1069	Jyesh	934	Tu 26 Feb	48	46	Ashad	88	763	,
1013	14	$23-$	1070		935	Mo 16 Mar	49	47	Srav	89	764	407
1014	15	$23-$	1071		936	Fis 5 Mar	80	48	Bbad	90	768	08
1015	16	$23-$	1072	Chast	93%	Th 24 Feb	61	49	Aswa	91	766	409
-1016		28 -	1073		938	Tu 13 Mar	52	50	Kart	92	767	10
1017	18	$23-$	1074	gra	939	8a 2 Mar	58	81	Agra	93	788	11
1018		23 -	1075		940	Fr 21 Mar	54	52	Paush	94	769	12
1019	20	$24-$	1076		941	Ta 10 Mar	55		Magh	95	770	418
${ }^{*} 1020$	4121	28 -	1077	Ashad	942	828 Feb	10.58	6954	Phall	96	771	414

TABLIE XVII - (Continued)
General Table of Corrcsponding Dates

TABLE XVII－（Continuod．）

General Table of Correoponding Dates．

A．D．	Sowar－Year，		Lumi－Somab－Year．				Jupiter－CrCles					$\begin{aligned} & \text { 娄 } \\ & \text { 震 } \\ & \text { 第 } \end{aligned}$
	$\left\|\begin{array}{c} \text { Kali } \\ \text { Yuga } \end{array}\right\|$	Initial Day．	$\left\|\begin{array}{c} \text { Vir } \\ \text { Bam } \end{array}\right\|$	Interal Month	$\left\|\begin{array}{l} \text { Sak } \\ \text { Sal } \end{array}\right\|$	Initial Day	60 Years．		$\begin{gathered} 12 \\ \text { Years } \end{gathered}$			
							3 Bid	Tel				
1051	4152	24 Mer	1108		978	517 Mar	1727	7025	Anma	87	802	445
－1052	$\dagger 53$	23 －	1109		974	Th 8 Mar	28	26	Klrt	28	308	446
1053	54	23 －		Chait	975	Mo 22 Feb	29	27	Agra	29	804	447
1064	65	24 －			976	$\begin{array}{llll}8 & 19 & \mathrm{Mar}\end{array}$	30	28	Paush	80	805	448
1058	66	24 －		85if	977	Th 2 Mar	31	29	Magh	81	806	448
－1056	57	28 －			978	We 20 Mer	82	30	Phal	32	807	450
1057	58	23 －			979	59 Mar	83	81	Chart	33	808	1
1058	59	24 －	1115	Jyenh	980	Fr 27 Feb	34.	82	Vals	84	809	452
1089	60	24 －			981	Th 18 Mar	35	38	Jyesh	85	810	453
－1060	4161	$28-$	1117		982	Mo 6 Mar	36	34	Ashad	86	811	154
1081	4162	34 Mar	1118	Vaid	983	Sa 24 Feb	87	85	Stav	87	812	455
1062	68	24 －	1119		884	Fr 15 Mar	88	86	Bhta	88	813	450
1068	64	24 －	1120	Bhad	985	Ta 4 Mar	88	87	Agwa	89	814	457
${ }^{1004}$	68	23 －	1121		986	Mo 22 Mar	40	88	Kart	40	815	458
1065	66	23 －	1122		987	Fr 11 Mar	41	89	Agta	41	816	458
1068	67	$24-$	1123	Aohed	988	We 1 Mar	42	40	Paush	42	817	460
1067	68	24 －	1124		989	Mo 19 Mar	49	41	Magh	48	818	461
－1068	69	23 －	1125		890	Fr 8 Mar	44	42	Pbal	44	819	62
1069	70	24 －	1126	Jyesh	891	Th 25 Feb	45	48	Chast	45	820	63
1070	4171	24 －	1127		892	Tu 16 Mar	46	44		46	821	64
1071	4172	24 Mar	1128	Aswa	998	8． 5 Mar	47	45	Jyeah	47	822	465
＋1072	78	28 －	1129		994	Fr 28 Mar	48	46	Achad	48	823	466
1078	74	$24-$	（1180		95	We 18 Mar	49	47	8 cov	49	824	467
1074	75	$24-$	1181	Brat	896	82 Mar	80	48	Bhed	50	825	468
1075	78	24	1182		897	8a 21 Mar	52	49	－Kart	61	826	469
＊1076	77	28 －	1188		98	We 9 Mar	88	50	Agra	52	827	470
1077	78	24 －	1184	Jyeah	898	Mo 27 Feb	54	51	Parah	68	828	471
1078	79	24 －	1188		1000	S 18 Mat	85	62	Magh	54	829	472
1079	80	24	1186		1001	Th 7 Mar	56		Phal	65	830	478
＊1080	4181	$23-$	1187	Vala	1002	Mo 24 Feb	1757	7054	Chait	86	831	474

＋Agrabayana omitwel，and Awina intercalary．

TABLE EVII.-(Continued.)

General Table of Corresponding Dates

A. D	Solar-Year		Lusi-Solar Year.				Jupiter Cyolma.					
	Kalı Yuga	Initial Day	$\left\|\begin{array}{l} V_{1 k} \\ \operatorname{Sam} \end{array}\right\|$	Intercal Month	$\left\|\begin{array}{l} \text { Sak } \\ \text { Sal } \end{array}\right\|$	Initial Day	80 Yeara		$\underset{\text { Yeare }}{12}$			
							S Sid	Te				
1081	4182	24 Mar	1138		1003	3015 Mr	17 ธ8	70 -in	Vals	57	832	475
1082	83	$24-$	1139	Bhàd	$100 \pm$	Fr 4 Mrr	59	86	Jyroh	58	883	478
1083	84	24	140		1005	We 22 Mar	60	87	Ashad	59	834	477
${ }^{+1084}$	85	24 -	1141		1008	Mo 11 Mar	18 l	58	Srâv	60	838	478
2085	86	24	1142	Ashad	1007	Fr 28 Fob	2	59	Bhâd	n1	835	478
1086	87	24 -	148		1003	Th 19 Mar	3	60	Aswa	62	837	480
1087	88	24 -	44.		1009	Mo 8 Mar	4	71	Kart	53	838	481
-1088	89	24 -	1140	Jyeeh	1010	Sa 26 Feb	5	2	Agra	54	839	482
1089	90	$24-$	1146		1011	Fr 16 Mar	6	3	Paush	68	840	488
1080	4191	24	1147	Aswa	1012	Ta 5 Mar	7		Magh	66	841	484
1091	4192	24 Mar	1148		1013	Mo 24 Mar	8	8	Phal	67	842	485
+1092	93	24 -	1149		1014	Sa 13 Mar	9	6	Chait	68	843	486
1093	94	24 -	1160.	Brav	101\%	We 2 Mar	10.	7	Vais	50	844	487
1094	98	24 -	1151		1015	Tu 21 Mar	11	8	Jyesh	70	845	488
1098	96	24 -	1152		1017	Sa 10 Mar	12	9	Ashad	71	846	489
-1096	97	24 -	1153	Jyesh	1018	Th 28 Feb	13	10	Srat	72	847	490
1097	98	24 -	1154		1019	We 18 Mar	14	11	Bhad	73	848	91
1098	99	24 -	58		1020	37 Mar	15	12	Aswa	71	849	92
1099	4200	24 -		Vals	1021	Th 24 Feb	16	3	Kârt	78	850	
*1100	4201	24 -	1157		1023	We 14 Mar	17	14	Agra	76	851	94
1101	4202	24 Mar	1158	Bhàd	1023	58 Mar	18	15	Parab	77	850	4985
1102	03	24 -	1159		1024	S. 22 Mar	10		Magh	78	858	96
1108	04	24 -	1160		1025	Wo 11 Mar	20	17	Phal	70	86	97
-1101	05	24 -	1161	Ashad	1026	Mo 29 Feb	24	18.	Chalt	80	5	98
1105	06	24 -	1152		1037	S 19 Mar	22		Vair	81	8	89
1106	07	24 -	1163		1028	Th 8 Mar	23	20	Jyesh	82	867	300
1107	08	$24-$	1161	Jyerh	1029	Mo 26 Feb	24	21	Aghad	88	858	01
*1108	09	84 -	55		1030	Mo 16 Mar	28		SrÊp	84	858	502
1109	10	24	1166	Aswa	1031	Fr 6 Mar	26		Bhâd	88	860	503
1110	4211	24	1167		1032	Th 24 Mar	1827	7124	Abwe	86	861	504

TABLIE XVII．－（Continued．）
General Table of Corresponding Dates

AD	Solar Yfar		Tunt Solat－Year				Jupitrr－Cycles				息畐豆	Haraha Kal．
	$\begin{gathered} \text { Kalı } \\ \text { Yuga } \end{gathered}$	Initial Day	Vik Sam	Intercal Month	$\left\|\begin{array}{l} \text { Snk } \\ \text { Sal } \end{array}\right\|$	Initial Day	60 Years		$\begin{gathered} 12 \\ \text { Yearm } \end{gathered}$			
							S Sıd	Tel				
1111	4212	24 Mar	1168		1073	Mo 13 Mar	1828	7126	Kart	87	862	506
${ }^{1} 1112$	13	24 －	1169	Srầ	1034	We 2 Mar	29	26	Agra	88	863	506
1118	14	24 －	1170		10\％${ }^{5}$	Th 20 Mar	30	27	Paush	89	884	507
1114	15	24 －	1171		1036	Ta 10 Mar	31	28	Mî̀gh	90	865	508
1116	16	24 －	1172	Jyesh	10 tr	$\mathrm{Sa}_{3} 27 \mathrm{Feb}$	32	29	Phal	91	866	508
＊1116	17	24 －	1173		1038	Fr 17 Mnr	33	30	Chnat	92	867	510
1117	18	24 －	1174		1039	Tu 6 Mar	34	1	Vais	98	868	511
1118	19	$24-$	11%	Chatt	1040	Sa 23 Feb	35	2	Jyesh	94	868	512
1119	20	$24-$	1176		1041	Er 14 Mar	36	3	Ashad	95	870	513
＊1120	4221	24 －	1177	Bhád	1042	We 3 Mar	37	4	Srà	98	871	514
1121	4222	24 Mar	1178		1043	Ta 22 Mar	88	6	Bhâd	0.	872	615
1122	23	24 －	1179		1044	Sa 11 Mar	39	6	Aswa	98	878	816
1123	24	24 －	1180	Ashad	1045	We 28 Feb	40	7	Kart	99	874	617
＊1124	25	$24-$	1181		1046	We 19 Mar	41	8	Agra	100	878	818
1125	26	$24-$	1182		1047	S 8 Mar	42	9	Paugh	1	878	510
1126	27	$24-$	1183	Jyesh	1048	Th 25 Feb	49	0	Magh	2	877	620
1127	28	24 －	1184		1040	We 16 Mar	44	1	Phal	8	878	521
＋1128	29	24 －	1185	A8wa	1050	Mo 5 Mar	45	2	Chait	4	879	522
1129	80	24 －	1188		1051	S 23 Mar	46	3.	Vaia	5	880	628
1180	4281	24 －	1187		1052	Th 13 Mer		4	Jyesh	6	881	524
1181	4282	24 Mar	1188	Ashad	1058	Mo 2 MEr	48	8	Ashad	7	882	526
－1132	83	24 －	1189		1054	g 2 Mar	49	6	Srâv	8	888	
1138	84	24 －	1190		1056	Th 9 Mar	50	7	Bhad	9	884	527
1134	85	24 －	1191	Jyesh	1058	Mo 28 Feb	61	8	Abwa	10	885	528
1185	86	25	1192		1057	Mo 18 Mar		9	Kırt		886	528
＊1138	87	24	1193		1058	Er 6 Msr	63	50	Agra	12	887	80
1137	38	24 －	1194	Chait	1059	Tu 23 Feb	54	1	Pauah	13	883	81
1138	89	24 －	1195		1060	Th 14 Mar	56	2	Magh	14	889	32
1139	40	24 －	1196	Srày	1081	Fr 3 Mar		8	Phal	15	890	83
${ }^{*} 1140$	4241	24 －	［197	．	1062	Fr 22 Mar	1857	714	Chart	18	891	634

TABLE XVII．－（Continued．）

General Table of Corresponding Dates

A．D	Solab－Yyaz		Luni Solar－Year				Jupinem－Ctcrits			$\begin{aligned} & \text { 寻 } \\ & \text { Ä } \\ & \text { 莒 } \\ & \text { 品 } \end{aligned}$		
	Kali Yuga	Initial Day	Vik Sam	Intercal Month	$\begin{aligned} & \text { Sak } \\ & \text { Sal } \end{aligned}$	Initial Day	60 Years		$\stackrel{12}{\mathbf{Y e a r s}^{2}}$			
							S Sid	Tel				
1141	4242	24 Mar	1108		1063	Ta 13 Mar	1858	7155	Vals	17	892	58
1142	43	24 －	1109	Ashad	106t	Ss 28 Feb	69		Jyent	18	893	538
1148	44	25 －	1200		1065	Fr 19 Mar	60	67.	Ashad	19	894	637
＊1144	45	24 －	1201		1066	We 8 Mar	193	58	Srav	20	895	638
1145	46	24 －	1.32	Vals	1067	S $2 \therefore \mathrm{Feb}$		59	Phad	21	896	39
1146	47	25 －	1203		1068	Sa it Mar		60	Aswa	22	897	40
1147	48	25 －	120 ！	Bhad	1069	We 5 Mar		721	Kait	23	898	11
－1148	49	24 －	1205		1070	Tu 23 Mar	b	2	Agra	24	899	± 2
1149	50	24 －	12		1071	Sa 12 Mar	6		Paush	25	000	519
1150	4251	24 －	1207	Ashad	1072	We 1 Mar	7		Mugh	20	901	54
1151	4252	25 Max	1208		1079	We 21 Mar	8	3	Phal	27	902	545
＊1152	53	24 －	1209		1074	S 9 Mr	9	6	Chait	28	903	516
1153	84	24 －	1210	Jyeeb		Th 20 Feb	10		Vats	23	904	517
1154	65	24 －	1271			We 17 Mar	1	8	Jyeah	30	90.	548
1155	56	$25-$	1212		1077	Mo 7 Mar	12	9	Ashad	11	906	510
		$24-$			1078	Fr 24 Feb		10	Brà	32	007	50）
${ }^{1156}$	57	$24-$	1218	Chalt	1078	$\begin{array}{llll}\mathrm{Fr} & 24 & \mathrm{Feb} \\ \mathrm{Tb} & 14 & \mathrm{ar}\end{array}$	13	11	Bhûd	33	908	531
1157	58	24 －	1214		1079	Th 14 Mr	14	11	Brua	34		552
1168		24 －	1215	81.8	1080	Mo 3 Mar		12	Absa Kärt	34 35		52
1100	60	$25-$	1216		1081	$\mathrm{B} \quad 22 \mathrm{Mar}$	16	17	Kärt	35	910	53
＊1160	4261	24 －	1217		1082	Fr 11 Mar			－Paush	96	911	4
1161	4262			Abbad	1085	Tu 28 Feb	19	15	Magh	37	912	565
1162		$25-$	1219		1084	Mo 10 Mar	20	16	Phal	38	919	566
1163		$25-$	1220		1085	Pr 8 Mar	21	17	Chat	39	914	557
${ }^{11164}$	65	24 －	1221	Vaıs	1086	We 26 Feb	22	18	Vals	40	915	5ã8
1165		24 －	1222		1087	Mo 15 Mar	23	19	Jyesh	41	916	559
1166	67	$25-$	1229	Bhadd	1088	Sa 5 MLar	24	20	Ashad	12	${ }^{917}$	0
1167	68	$25-$	1224		1089.	Fr 24 Mat	2 B	21	Srav	43	918	661
${ }^{* 1168}$	69	24 －	1225		1090	Tu 12 Mar	26	22	Bhad	44	919	562
1169	70	24	1226	8 CH	1001	Sa 1 Mar	27	23	Aswa		20	568
1170	4271	25 －	1227		1008	Sa 21 Mar	1028	7224	Kirt	46	921	564

TABLTR XVII．－（Continued．）
General Table of Corresponding Dates．

A D	Solar Year		Luni－Solar－Year				Jupiter Cyoles			$\begin{aligned} & \text { 畐 } \\ & \text { 品 } \\ & \text { 宽 } \\ & \infty \end{aligned}$	$\begin{aligned} & \text { 易 } \\ & \text { 豆 } \\ & \text { 雨 } \end{aligned}$	或
	$\begin{gathered} \text { Kalı } \\ \text { Yuga } \end{gathered}$	Initial Day	$\left\|\begin{array}{c} \text { Vık } \\ \text { Sam } \end{array}\right\|$	Intercal Month	$\begin{array}{\|l\|} \hline \mathrm{Sak} \\ \mathrm{Sal} \\ \hline \end{array}$	Inital Day	60 Years		$\underset{Y_{\text {earb }}}{12}$			
							S Sxd	Te1				
1171	4272	25 Mar	1228		1093	We 10 Mar	1829	7225	Agra	47	922	
＊1172	73	24 －	1229	Jyeah	1094	$5 \quad 27 \mathrm{Feb}$	30	26.	Paush	48	923	
1173	74	24 －	1290		1095	Sa 17 Mar	31	27	Magh	49	924	
1174	75	$25-$	1231		1096	Th 7 Mar	32	28	Phal	50	925	5
1175	75	$25-$	1232	Chait	1097	Mo 2t Fob	33	29	Chatt	E1	926	
＊1176	77	$24-$	1233		1098	Sn 13 Mar	34	30	Yas	52	927	570
1177	78	24 －	1234	Srav	1039	We 2 Mar	85	31	Jyesh	63	928	571
1178	79	25 －	1235		1100	We 22 Mar	36	32	Ashed	54	920	572
1179	80	$25-$	1296		1101	S 11 Mar	37	33	Srâv	56	930	573
${ }^{1180}$	4281	$24-$	1237	Ashad	1108	Th 28 Feb	38	84	Bhad	56	931	574
1181	4282	24 Mar	1238		1103	We 18 Mar	89	85	Aswa	57	932	575
1182	83	$25-$	1239		1104	Mo 8 Mar	40	88	Kart	58	938	576
1183	84	$25-$	1240	Vals	1105	Fr 25 Feb	41	37	Agra	59	934	77
＊1184	85	$24-$	1241		1105	Th 15 Mar	42	38	Panab	60	935	678
1185	86	24 －	1242	Bhad	1107	Mo 4 Mar	43	39	Màgh	61	938	79
1188	87	25	1243		1103	Mo 24 Mar	44	40	Phal	62	937	80
1187	88	$25-$	1244		1109	Fr 13 Mar	45	41	Chart	53	938	581
＊1188	89	24 －	1245	Srav	1110	Tu 1 Mar	46	42	Vais	64	939	582
1189	90	24 －	12461		1111	Mo 20 Mar	47	43	Jyeah	65	940	
1190	4291	$25-$	1247		1112	Sa 10 Mar	48	44	Ashad	65	941	584
1191	4292	25 Mar	1248	Jyesh	1119	We 27 Feb	49	45	Srêv	87	942	58
＊1192	93	24 －	1249		1114	Mo 16 Mar	60	45	Bhad	68	943	686
1193	91	25	50	\dagger	1115	Sb 6 Mar	51	47	Abwa	59	944	587
1194	95	$25-$	1251	Chait	1116	We 23 Feb	52	48	Kârt	70	94	888
1195	95	25	1203		1117	Ta 14 Mar	53	49	Agra	71	946	88
${ }^{1} 1196$	97	24 －	1253	Brav		Sb 2 Mbr	54	50	Paush	72	947	
1197	98	25	1254		1119	Sa 22 Mar	55	51	Magh	78	948	
1198	99	$25-$	1255			We 11 Mar		62	Phal	74	949	592
1199	300	$25-$	1256	Jyesh	1121	8 28 Feb		53	Chait	75	950	893
${ }^{*} 1200$	4801	24 －	1257		1122	Sa 18 Mar	1958	7254	Vais	76	951	594

\＄Agrehayana owitted，and Anwina intarcelary．

TABLE XVII -(Continued)
General Tuble of Cor responding Dates

TABLE XVII.-(Continued.)
General Table of Corresponding Dates

A D		g-Ykía	LUNI-SOLAR-YEAR				Jupiter-Cyclas				$\begin{aligned} & \text { 砲 } \\ & \text { 㤩 } \\ & \text { B } \end{aligned}$	
			$\left\{\begin{array}{l} V_{1 k} \\ \text { Sam } \end{array}\right.$	Intercal Month	$\left\lvert\, \begin{aligned} & S_{\text {alk }} \\ & \mathrm{Sal}_{\mathrm{al}} \end{aligned}\right.$	Initial Day	60 Yeare		$\frac{12}{\text { Years }}$			
							Sid	Tel				
1231	4332	25 Mar	1288	Авта	1169	Th 6 Mar	2029	325	Agra	7	982	620
-1232	3)	25-	1289		1154	Th 25 Mar	90	26	Paush	8	983	26
1233	31	25-	1200		1135	Mo 14 Mar	81	27	Magh	9	98.	627
12.34	3 ;	25	1291	Sriv	1156	Fr 3 Mrr	93	28	Pb 61	10	935	28
1235	36	25	1292		1157	Th 22 Mar	33	29	Chait	11	986	629
*1236	37	25	1293		1158	Tu 11 Mar	34	30	Vas	12	087	0
1237	88	$25-$	129*	Jyesh	1159	Sa 28 Feb	33	81	Jyesh	13	988	631
1278	30.	23	1295		1160	Mo 19 Mar	36	32	Ashad	14	989	32
1239	40	20	1296		1161	Tu 8 Mar	37	33	Srav	18	990	38
* 1240	4341	25	1297	Ve1s	1162	S 26 Feb	38	34	Bhad	16	991	634
1241	4342	2s Mar	1208		1169	Fr 15 Ma	39	83	Asw	17	992	696
1252	43	25	1209	Bhâd	1164	Tu 4 Mar	40	86	K4rt	18	093	86
1243	44	25	1300		1165	Mo 23 Mar	41	37	Agra	19	994	637
*1244	45	$23-$	1301		1166	Sa 12 Mar	42	38	Paush	20	99**	8
1245	46	$25-$	1302	Ashad	1167	We 1 Mar	44	39	- Phat	21	936	89
1246	47	$25-$	1303		1168	Tu 20 Mar		40	Chat	22	997	10
1247		$25-$	13		1169	Sa 9 Mar		41	Vaio	23	908	641
*1243	49	$25-$	1305	Jyeeh	1170	We 26 Feb	47	42	Jyesh	$2 \pm$	099	2
1249	50	25	1306		1171	We 17 Feb	48	43	Ashad	25	1000	8
1280	4351	$25-$	1307	Aswe	1172	S 6 Mar		44	Srav		1001	614
1251	4352	26 Mar	1308		1177	Sa 2\% Mar	50	45	Bhåd	27	1002	645
*1232	53	25	1309		1174	Th 14	51	46	8ws	23	003	
1253		$25-$	1310	Srav	1175	Mo 3 Mgr	52	47	Kart	29	100t	
1254		$26-$	1311			S 22 Feb	53	48	Agra	30	005	
1255		26 -	1312		1177	Th 11 Mar	54	49	Paush	31	1000	
* 1256	57	$25-$	1313	Jyesh	1178	Mo 23 Feb	55	50	Mâgh	32	1007	650
1257	58	$25-$	1314		1178	813 Mar	56	51	Phel	88	1003	
1258	59					Th 7 Mar	57	52		84		2
1259	60	26 -	1316	Ohalt	1181	Tu 25 Feb	58	58	Vaia	30	1010	3
${ }^{+1200}$	4361	$25-$..	1182	Mo 15 Mar	20597	7354	Jyesh	36	1011	54

TABLE XVIr.-(Continued.)
Gencral T'uble of Comesponding Dates

TABLㅍ XVII.-(Continued.)
General Table of Corvespondung Dates

TABL표 XVII.-(Continued)
General Table of Corresponding Dates

TABLIE XVII.-(Continued.)

General Table of Corresponding Dates.

A D	Solat Year		Luni golamerene.				Jupitee-OTOLES				
	$\begin{gathered} \text { Knll } \\ \text { Yage } \end{gathered}$	$\begin{gathered} \text { Inltisl } \\ \text { Day } \end{gathered}$	$\left\lvert\, \begin{aligned} & \text { Vik } \\ & \text { Bam } \end{aligned}\right.$	Intercal Month	$\left\|\begin{array}{l} \text { Sek } \\ \text { Sal } \end{array}\right\|$	Initial Dej	60 Yeara		$\stackrel{12}{\text { Yearw }}$		
							8 Sid	Tel			
1851	4452	26 Mar	1408	Vain	1273	A 27 Feb	2281	7525	Magh	27	1102
*1853	53	$20-1$			1274	S 18 Mar	82	26	Phal		108
1853	54	$20-1$		Bhid	1275	Th 7 Mar	88	27	Chat		1104
1854	55	$20-1$	1411	...	1276	We 26 Mar	34	28	Vais		1105
1855	56	$20-1$			1277	S 15 Mar	35.	29	Jyesh		1108
*1356	57	$26-1$	1413	Azat	1273	Fr 4 Mar	96	80	Ashad		1107
1957	88	$26-1$	1414	...	1278	Th 23 Mar	37	81	Bray		1108
1858	59	26 --	1415		1280	Mo 12 Mar	38	82	Bhid		1109
1859	60	26-1	1416	Jyash	1281	Fr 1 Mar	39	84	Aswa		110
${ }^{-1860}$	4461	26 ...	1417	...	1232	Th 20 Mar	40	34	Kart		1111
1861	4462.	2, Mar	1418		1288	Tu 9 Mar	41	85	Agra		112
1302	63	20 -	$1+18$	Vals	1284	8s 26 Feb	42	80	Paush		1113
1303	64	27 -	1420		1288	Fr 17 Mar	48	87	Magh		1114
*1864	68	26 -	1421	Bhad	1288	Tu 5 Mar	44	88	Phál		1118
1505	66	26 -	$1+22$		1237	Mo 24 Mar	45	39	Chart		116
1966	67	26 -	1423		1238	Fr 13 Mar	46	40	Vu2e		1117
1367	68	26 -	1424	Ashed	1289	Tu 2 Mar	47	41	Jyeah		118
* 1368	69	26 -	1420)		1290	Iu 21 Mar	48	42	Ashad		119
1369	70	26 -	1426		1291	Sa 10 Ma	48	43	Stay		120
1370	4471	26 -	1427	Vals	1292	We 27 Feb	50.	$4{ }^{4}$	Blatid		1121
1371	4472	27 Mar	1428		1294	We 19 Mar	61	45	Aswa		1122
*1972	73	26 -	1429	Bhad	1204	S 7 Mar	53	46	Kait		129
1374	74	26 -	$1+380$		1295	Sa 26 Mar	t3	47	Agia		1124
1374	75	26 -	1411		1296	We lis Mar	tis	48	Paugh		125
1375	76	27 -	$1+32$	Sait	1297	S 4 Mur	68	49	Magh		126
+1370	77	26 -	1433		1298	Ss 22 Mar	351	80	Phàl		127
1377	78	26 -	$148 t$		1299	We 11 Mar	57	61	Chat		128
1378	79	26	1430	Jyesh	1300	Ma 1 Mar	58	62	V018		128
1379	80	72	1430		1301	820 Mar	30	63	Jyesh		1180
*1980	4481	26 -	1437	\dagger	1302	Th 8'Mar	2260	7554	Ashad	5	1191

t hartike ountesd, nod Keruka intercalary

TABLE XVII.-(Continued.)
General Table of Cor responding Dates

A.D	Solar-Year		Luni-Solar Feak				Jupiren-Cyoles			荲	
	$\begin{gathered} \text { Kall } \\ \text { Yuga } \end{gathered}$	Initial Day	$\left\|\begin{array}{l} \bar{F}_{1 k} \\ \text { Sam } \end{array}\right\|$	Intercal Ilonth	$\left\|\begin{array}{l} \mathrm{Sakr}^{\mathrm{Sal}} \end{array}\right\|$	Initial Day	60 Yenrs		$\underset{\text { Years }}{12}$		
							S Std	Tel			
1881	4482	26 Mar	1488	Vais	1303	Mo 25 Feb	201	75 55	Srậ		1132
1882	89	26-	14.39		1304	$\mathrm{S} \quad 16 \mathrm{Mar}$	2	ถ0	Hhatd		1183
1889	84	$26-$	1440	Bhadd	1305	Th 5 Mar	3	5	Aswa		1194
-1884	88	$28-$	1441		1306	Th 2t Mar	4	68	Kirt		1188
1985	88	$28-$	1442		1307	Mo 13 Mar	5	59	Agra		1136
1886	87	$26-$	1448	Ashad	1308	Fr 2 Mar		60	Paush		1197
1887	88	$27-$	1444		1303)	Fr 22 Mar		761	Magh		1198
*1388	89	26 -	1445		1310	Ta 10 Mar		2	Phal		1839
1389	90	28 -	1446	Jyesh	1311	Sa 27 Feb	0	8	Chat		1140
1390	4491	26 -	1445		1812	Mo 18 Mar	10	4	Y01s		1141
1391	4492	27 Mar	1448	Bhâd	1318	Tu 7 Mar	11	B	Jyenh		1142
${ }^{1} 1392$	93	$26-$	1448		1314	Mo 25 Mar	12	6	Abhad		1143
1398	94	$26-$	1450	-	1915	Fr 14 Mar	19	7	Srêr		1144
1894	95	28 -	1451	Srêt	1318	Ta 3 Mar	14	8	Bhed		1148
1395	96	$26-$	1459		1317	Mo 22 Mar	15	9	A8wa		1146
*1396	97	$26-$	1453		1318	Sz 11 Mar	10	10	Kart		1147
1397	98	$26 \sim$	1454,	Jyeah	1319	We 28 Feb	17.	11	Agra		1148
1398	98	28 -	1455		1320	Ta 19 Mar	18	12	Paush		1149
1899	4500	27 -	1458	\dagger	1321	Sa 8 Mar	19	18	Mágh		1160
${ }^{1} 1400$	4801	26 -	1457	Chait	1322	Th 28 Feb	20	14	Phil	78	1151
1401	4502	26 Mar	1458	-	1329	We 16 Mar	21	15	Chatt	77	1152
1402	08	27 -	1459	Bhad	$132+$	Mo 6 Mar	22	16	Vain		1183
1408	04	$27-$	1460		1325	S 28 Mar	29	17	Jyeah		1154
${ }^{1} 1404$	05	26 -	1461		1326	Th 19 Mar	24	18	Ashad		(1158
1405	08	28 -	1462	Ashad	1327	Mo 2 Mar	28	19	Srâr		1156
1408	07	27 -	1463		1328	Mo 22 Mar	26	20	Bhad		21157
1407	08	27 -	1464		1829	Fr 11 Mar	27	21	Aswa		1168
${ }^{1} 1408$	09	28 -	1485	Vais	1380	Ta 28 Feb	28	22	Kârt		1189
1409	10	$28-$	1486		1331	S 17 Mar	29	23	Agra		81160
1410	4511	27 -	1467	Bhed	1352	Fr 7 Mar	8380	7624	Pagah		61161

\dagger Aurahuyana omitted, and Kartuka interoshary.

TABLF XVII.-(Continued.)

General Tuble of Corresponding Dates

$\Delta \mathrm{D}$	Solar Yeall		Lumi Solab Year				Jupitera-Cycles				
	$\left\{\begin{array}{l} \text { Kalalı }_{2} \\ \text { Yuga } \end{array}\right.$	Inital Day	$\begin{gathered} V_{1 k} \\ \text { Sum } \end{gathered}$	Intercal Month	Sak Sal	Initial Day	60 Years		$\underset{\text { Years }}{12}$		
							s Sid	Tel			
1411	4512	27 Mar	1168		1333	Th	23	7825	Magh		2
* 1412		26 -	1469		1331	Mo li Mar	32	20	Phál		1163
$1+13$	14	26 -	1470	Ashad				27			
213	14	27 -	1470	Ashad	1353	Fr 3 Mat	33	27	Chait		61
1414	15	$27-$	$1+71$		1376	Fr 23 Mar	31	28	Vals		1165
1415	16	$27-$	1472		1337	Tu 12 Mar	3b	29	- Abliad		1160
-1416	17	26 -	1473	Jjesh	1338	Sa 29 Feb	37	30	Slav		1107
1417	18	$20-$	1774		1339	Fr 19 Ma	36	31	Bhad		1168
1418	14	$27-$	1475	Eert	1740	We 9 Mar	39	32	Aswa		1169
1419	20	$27-$	1470		$13+1$	Mo 27 Mar	10	33	Kart		1170
* 1420	4521	$26-$	1478		1842	Sa 16 Mar	41	34	Agra		1171
1421	4522	26 Mar	1478	Slaty	1313	We s Mar	42	35	Paurh		1172
1422	23	27 -	1473		1341	Tu 24 Mat	43	36	Magh		1179
1123	24	27 -	1480		$134{ }^{\circ}$	Sa 13 Mar	44	33	Plal		117t
*1424	25	26 -	1481	Ashad	1346	Th 2 Mar	4.5	88	Chart		175
1225	26	27 -	1182		1317	We 21 Mar	46	39	Vals		1176
1426	27	27 -	1483		$13+8$	$\mathrm{S} \quad 10 \mathrm{Mar}$	47	40	Jyesh		1177
1427	28	27 -	1484	Vais	1349	Th 27 Feb	48	41	Ashad		178
-1428	29	26	1480		1350	We 17 Mat	49	42	Sráv		1179
1129	30	27 -	1486	BLad	1351	310	50	43.	Bhad		8
1430	4581	27	1487		1352	S 26 Mar	51	44	Aswa		1181
1431	4532	27 Max	2488		1353	Th 15 Mar	52	45	Kart		1182
*1432	33	20 -	1489	Ashad	13.4	Mo 3 Mar	53	46	Agra		1188
1433	34	27 -	1490		1853	Mo 29 Mar	51	47	Paush		1184
1434	35	$27-$	1491		1356	Fr 12 Mar	65	48	Megh		183
1435	36	$27-$	1492	Jjesh	1857	Tu 1 Mar	66	40	Pucl		86
${ }^{1} 1436$	37	20^{-}	1493		1358	गro 10 Mar	57	60	Chat		187
1437	38	$27-$		Kart	1358	Sa 9 Mar	88	81	Yais		188
2438	89	27 -	1495		1360	Th 27 Mar	60	82	Jyeeh	14	189
1439	40	$27-$	1396		1361	Mo 16 Max	2360	57	Ashad		1190
* 1440	4511	26 -	1497	8ray	1362	Sa 5 Mar	241	7684	Srêt		1191

TABLE XVII.-(Continaed.)

General Table of Corresponding Dates

TABLIH XVII.-(Continued.)
General Table of Corresponding Dates

4 D	Solaz-Yent		Luntmotar-Yeas				Juptren-CTCLIE				$\begin{aligned} & \text { 岳 } \\ & \text { 㤩 } \\ & \mathbf{8} \end{aligned}$
	Kall Yuge	Intial Day	$\begin{aligned} & \text { Vik } \\ & \text { Sam } \end{aligned}$	Intercal Month		Initial Day	60 Feers.		$\begin{gathered} 12 \\ \text { Yoarsin }^{2} \end{gathered}$		
							3. 31 d	Tel.			
1471	4572	27 Mar	1528		1393	Fr 22 Mar	2432	7725	Phal		1222
${ }^{*} 1472$	73	27 -	1629		1394	We 11 Mar	93	25	Chatt	48	1228
1473	74	27 -	1530	Jyerh	1895	S 28 Feb	34	27	Yais		1224
1474	70	27 -	1591		1896	Ss 19 Mar	35	28	Jyeah		1225
1475	75	27 -	1532	Aswa	1397	We 8 Mar	35	29	Ashad		1226
*1476	77		153s,		1398	We 27 Mar	37	30	Srav		1227
1477	78°		1584		1399	516 Mar	38	81	Bhad		1228
2478	79	$27-$	1535	Srà	1400	Th 5 Mar	30^{2}	\$2	Aswn		1220
1479	80	27 -	1030]		1401	We 24 Mar	40^{\prime}	38	Kirt		1280
${ }^{1} 1480$	4581	27 -	1537		1102	Mo 13 Mar	41	34	Agra		1231
1481	4582	27 Mar	1538	Ashad	1403	Er 2 Mar	42	85	Paush		1232
1482	89	27 -	1539		1404	Th 21 Mar	43	86	Màgh		1233
1483	84	28 -	1540		1405	Tu 11 Ma	44	37	Phal		1234
*1484	85	27 -	$154]$	Chant	1400	8s 28 Teb	40°	88	Chatt		1235
1485	86	27 -	1542		1 107	Th 17 Mar	46	39	Vals		1236
1486	87	27 -	1543	Srav	1408	Tu 7 3a	47 ,	40	Jyeah		1287
1487	88	28 -	154t]		1403	Mo 26 Mar	48.	41	Ashad		1238
*1488	89	27 -	1040]		1410	Fr 14 Mar	49	42	Sray		1289
1489	90	27 -	1594	Ashad	1411	Ta 3 Mar	50	43	Bhàd		1240
1490	4591	27 -	1547		1412	Mo 22 Mar	81	44	Abwa	66	1241
1491	4592	28 Mar	1548		1418	8. 12 Mar	52	45	Kirt		1848
*1492	98	27 -	1549	Vais	1414	We 2' Feb	53	45	Agra		1248
1493	04	27	1550		1415	Tu 19 Mar	64	47	Paush		1244
1404	98	28	1551	Bhal	$1+10$	\& 9 Mar	65	48	Magh	70	1245
1495	96	28 -	1482		1417	Fr 27 Mar	66	48	Phal		1246
*1496	97	27	1553		1418	We 15 Mar	B7	50	Chast		1247
1497	98	$27-$	1554	Srav	1419	(5 Mar	58	51	Vals		124.9
1498	99	27 -	1555		1420	Sa $2 \pm$ Mar	59	52	Jyerh		1249
1499	4600	28 -			1421	Th 14 Mar	2450		Anhad		1250
* 1600	4601	27 -	1557	Jyeak	1422	Mo 2 Mar	2	7754	Hhid		1251

TABLE XVII.-(Continued)
General Table of Comesponding Dates

TABL표 XVII.-(Continued.)

General Table of Corresponding Dates.

A D	Solar-Year		Luni Solab-Year				Jupiter-Cycles					砢
	Kalı Yuga	Initial Day	$\left\|\begin{array}{l} V_{1} \mathbf{z} \\ S \approx m \end{array}\right\|$	Intorcal Month	$\left\lvert\, \begin{gathered} \text { Sak } \\ \text { Sal } \end{gathered}\right.$	Intial Day	60 Years		$\underset{\text { Years }}{12}$			
							8 Sid	Tel				
1531	4632	28 Mar	1588		1453	S 19 Mar	2533	7825	Chart	7	1282	
* 1632	33	27 -	1889	Bhad	1454	Fr 8 Mar	34		Vaıs	8	1283	
1533	34	27 -	1590		1405	We 26 Mar	35	27	Jyesh	9	1284	
1684	35	28 -	1501		14076	Mo 16 Mar	36	28	Ashad	10	1285	
1535	36	28 -	1592	Brip	14857	Fr 6 Mar	97	29	Srâv	11	1286	
${ }^{*} 1536$	37	27 -	1593		'1458	Th 29 Mar	98	30	Bhâd	12	1287	
1597	38	28 -	1504		1459	Tu 13 Mar	39	31	Abwa	13	1288	
1638	39	28 -		Jyesh	1460	Sa 2 Max	40	92	Kart	14	1280	
1539	40	28			1461	F: 21 Mar	41	33	Agra	15	1200	
* 1840	4641	27 -	1587		1462	Tu 9 Mar	42	34	Paush	16	1291	
1541	4642	28 Mar	t598,	Chait	1463	S 27 Feb	49	85	Mâgh	17	1292	
1542	43	$28-$	1899		1464	Sa 18 Mar	4	36	Phal	18	1293	
1549	44	28 -	1600	Srâv	1465	We 7 Mar	45	87	Chat	19	1294	
*1544	45	27 -	1601		1466	Tu 25 Mar	46	38	Vala	20	1290	
1545	46	28 -	1602		1467	S 15 Mar	47	39	Jyesh	21	1296	
1548	47	28 -	1603	Ashâd	1468	Th 4 Mar	48	40	Abbad	22	1297	
1547	48	28 -	1604		1469	We 23 Mar	49	11	Sréy	23	1298	
*1548	49	27 -	1605		1470	S 11 Ma	50	42	Bhed	24	1290	
1549	50	28 -	1606	Vals	1471	Fr 1 Mar	51	43	Abwa	25	1800	
1550	4651	28 -	1807		1472	We 19 Mar	52	44	Kârt	26	1801	
1551	4652	28 Mar	1608	Bhâd	1473	58 Mar	53	45	Agra	27	1802	
*1552	68	$27-$	1809		1474	Sa 26 Mar	54	46	Paush	28	1303	
1558		28 --	1610		1475	Th 16 Mar	55	47	Mâgh	29	130+	
1554	55	28 -	1611	Ashad	1478	Mo 5 Mar	56	48	Phà	30	1305	
1555	56	28 -	1612		1477	S 24 Mar	57	49	Cbert	31	1806	063
*1556	57	27 -	1619		1478	Th 12 Mar	58	50	Vais	82	1807	964
1657	58	28 -	1614	Jyesh	1479	Tu 2 Mar	59		Jyesh	83	1808	965
1558	59	28	1615		1480	Mo 21 Mar	60	52	Ashad	84	1909	086
1559	80	28 -	1616	Aswa	1481	Fr 10 Mar			Sris	85	1810	987
* 1600	4681	27 -	1617		1482	We 27 Mar	282	78. 54	Bhid	96	1811	968

TABLE XVI.-(Continued.)
General Table of Corresponding Dates

TABL思 XVII，－（Continued．）

General Table of Corresponding Dates．

A D	Solar－Year		Luni－SOLSE－YEAR．				Jupiter－Cyolss，				$\begin{aligned} & \text { 蒠 } \\ & \text { 豆 } \\ & \text { 5 } \end{aligned}$	5
	Kah Yuga	Intial Day	$\begin{gathered} \text { Vil } \\ \text { Samm } \end{gathered}$	Intercal Month	Sak	Infital Day	60 Feare		$\begin{gathered} 12 \\ \text { Yoars } \end{gathered}$			
							s sid	Tel				
1591	4692	28 Mar	1548		10\％13	Tu 15 Mar	2634	7928	Vais	67	184	998
＊1592	93	28	1049	Ashari	1514	55 Mar	35	26	Jyesh	68		1000
1693	94	28 －	1650		1515	Fr 23 Mar	36	27	Ashad	69	13	1001
1594	95	28 －	1651		1516	Tu 12 Mar	37	28	Srậ	70	13	1002
1595	96	28 －	1632	Jyesh	1617	52 Mar	38	29	Dhat	71	18	003
＊1596	97	28 －	1653		1518	Ba 20 Mar	39	30	Aswa	72	13＋	1004
1597	96	28	1654	Aswa	1510	We 9 Mar	40	31	Kart	73	134	000
1596	99	28 －	16 ¢\％		1520	Tu 28 Mar	41	32	Agra	$7 \pm$	131	1000
1598	4700	29 －	1666		1621	S 18 Mar	42	33	Paush	75	13	1007
＊ 1600	4701	28	1687	Srár	1622	Th 6 Mar	43	34	Magh	76	13	008
1601	4702	28 Mar	1556		1529	We 25 Mar	44	35	Phâl	77	135	1000
1602	08	28 －	1659		1524	S 14 Mar	45	36	Chart	78	185	010
1603	04	29 －	1660	Ashad	1595	Fr 4 Mar	45	37	Vals	79	135	1011
${ }^{*} 1604$	05	28 －	1661		1626	Th 22 Mar	47	38	J yesh	80	136	012
1605	06	28	1662		1527	Mo 11 Mar	48	39	Ashad	81	135	1013
1606	07	26 －	1668	Ohnat	1628	Fr 28 Feb	49	40	Stà	82	135	014
1607	08	29	1664		1529	Fr 20 Mar	50	41	Bhad	83	130	15
${ }^{+1608}$	09	28 －	1655	Bhad	1530	Tu 6 Mar	51	42	Abwa	84	135	16
1609	10	26	1655		1531	S 26 Mar	62	13	Kât	65	136	1017
1510	4711	28 －	1667		1632	Th 15 Mar	53	44	Agra	88	180	1016
1611	4712	29 Mar	1668	Ashad	1533	We 6 Mar	54	45	Paush	87	13	1019
＊1612	13	28 －	1669		1684	Mo 23 Mat	5\％	46	Mâgh	88	136	20
1618	14	26	1670		1635	Fr 12 Mar	56	47	Phâl	89	13	1021
1614	15	28 －	1671	Jyeah	1536	Ta 1 Mar	57	46	Chart	90		022
1615	16	29	1672		1597	Tu 21 MKar			V218	91	136	28
＊ 1615	17	26 －	1673	Aswa	1638	Sb 9 Mar	69		Jyesh	92	136	24
1617	18	28 －	1674		1639	Fr 26 Mar	60		Abhad	98	18	1025
1618	18	28 －	1675		1640	Ta 17 Mar	271		Srev	94	12	1046
1019	20	29	1676	Brav	1841	57 Mar	2		Bhad	95	187	1027
${ }^{+1620}$	4721	38－	1677		1642	$\mathrm{gb}_{8} 25 \mathrm{Mar}$	8	7954	Aswa	96	137	1028

TABLE XVII,-(Continued.)
General Table of Coriesponding Dates

TABLE XVII.-(Continued.)

General Table of Corvesponding Dates

A D	Solar Year.		Luni-Solar Year				Jupiter-Cyoles.					告
	$\begin{gathered} \text { Kali } \\ \text { Yuga } \end{gathered}$	Initial Day		Intercal Month	$\left\|\begin{array}{c} \text { sak } \\ \text { Sal } \end{array}\right\|$	Initial Day	60 Years		$\stackrel{12}{\text { Years }}$			
							3 S					
1651	4752				1573	Th 13 Mar	2734	8025	Vals			1059
*1652		$28-1$	1709	Vals	1.574	Mo 1 Mav	35	20	Jyesh	28	14031	1060
$16{ }^{\text {a }}$	$5 \pm$	29 -			1.575	Mo 21 Mar	36	27	Ashad	29	1404	1061
16at	58	$29-$	1711	Bhed	1576	Fr 10 Mlr	37	28	Srív	30	1405	1062
1655	56	29 -			1575	We 28 Mar	38	29	Bhid	31	1406	1063
${ }^{*} 1656$	57	$28-$			1578	Sa 16 Mar	39	30	Aewa		1407	064
1657	58	29 -		Srav	1579	Sa 7 Mar	40	31	Kart	33	1408	1068
1658	59	29 -			1580	Th 2 ä Mar	41	32	Agra	34	1409	1066
1659	60	29 -	1716		1581	Mo 14 Mar	42	33	Pauah	35	1410	1067
${ }^{*} 1660$	4761	28 -	1717	Jyesh	1882	Fr 2 Mar	43	34.	Magh		, 1411	1088
1661	4762	29 Mar	1718		1583	Fr 22 Mar	44	95	Phal	37	1412	1069
1662	63	29 -	1719		1584	Tu 11 Mar	45	36	Chart		1413	1070
1663	61	29 -		Chatt	1385	Sa 28 Feb	46	37	Vals	39	141	1071
${ }^{1} 1664$	65	28 -			1586	Sa 10 Mar	47	18	Jyesh		141	072
1665	66	29 -	1722	Srav	1587	Th 9 Mar	48	391	Ashad		1416	1073
1666	67	29 -			1588	Tu 28 Mar	49	40	Srav		141	1074
1667	68	29 -			1584	Sa 16 Mar	50	43	Bhâd		1418	1075
*1868		28 -	1725	Ashad	1590	We 4 Mar	51	42	Abwa		$1+10$	1076
1669	70	29 -			1591	$1 \mathrm{Ta}^{23} \mathrm{Ma}$	52	43	Kârt		${ }_{6} 1120$	1077
1670	4771	29 29	$\left\lvert\, \begin{gathered}1726 \\ 1727\end{gathered}\right.$			2 Sa 12 Mar	-54		Paush		61421	1078
1671	4772	29 Mar	1728	Vale	1893	We 1 Mar	50	45	Mâgh		471422	1078
${ }^{*} 1672$		$28-$			1094	Ta 19 Mar	- 58	46	Phal		481428	1080
1673	74	$29-$		Bhad	1595	59 Mar	87	47	Chert		481424	1081
1674		$29-$	1731		1096	Sa 28 Mra	58	48	Vale		501425	1082
1675	76	$29-$			1597	7 We 17 Mar	\% 59	49	Jyesh		511428	1088
*1676	77	29 -	1733	Srâv	1508	S 5 Mar	r 60	50	Ashed		521427	1084
1677	78	29 -	1731			S 20) Mar	281	51	Srav		581428	1085
1678	79	$29-$	1785		1600	0^{\prime} Th 14 Mar		,	Bhed		541429	1086
1679	80	$29-$	1736	Jyesh	1601	Mo 3 Mar		83	Aswa		65.1430	01087
*1680	4781	28-	1737		1602	2821 Mar	$r 4$	80.64	Kart		661431	11088

TABLER XVII--(Continued.)
General Table of Corresponding Dates.

TABLR XVII.-(Continued.)
General Table of Corresponding Datse.

TABLE XVII．－（Continued．）
Goneral Table of Corresponding Dates

A．D．	Solab－YEar		Luni－Solab Yeab				Jufiter－Ctcces			$\begin{aligned} & \text { 息 } \\ & \text { N } \\ & \text { 部 } \\ & \text { 品 } \end{aligned}$	思㤩恶	者
	$\left\|\begin{array}{c} \text { Kali } \\ \text { Yuga } \end{array}\right\|$	Initial Day	$\left\|\begin{array}{c} V_{1 k} \\ S B m \end{array}\right\|$	Intercal Month	$\left\|\begin{array}{l} \text { Sak } \\ \mathbf{S a l}^{2} \end{array}\right\|$	Inatiol Day	60 Yemra．		$\stackrel{12}{\text { Year }}$			
							S SId	Tol				
1741	4842	29 Mar	1708	Stiv	1663	Sa 7 Mar	29 B	81.58	Agra		1492	1148
1742	43	80－	1799		1604	Sa 27 Mar		${ }_{66} 6$	Paush		1493	1150
1743	44	$80-$	1800		1668	We 16 Mar	7		Magh		1494	51
＊1744	48	29 －	1801	Ashed	1666	84 Mar	8	68	Phal		1495	1152
1745	46	$29-$	1802		1667	Se 23 Mar	9		Ohait		1496	8
1746	47	$30-$	1803		1668	Th 13 Mar	10	60	Fass		1497	54
1747	48	$30-$		Chat	1669	Mo 4 Mar	11	821	Jyesh		1498	b 5
＋1748	4	$29-$	180 a		1670	Sa 19 Mar	jn	－	Abhad		14991	1156
			1806	Bhid	1671	Th 9 Mar	13		Srev		1600	1167
1749 1750	50	$29-$ $30-$	1807	Bhed	1672	We 28 Mar	1		Bhad		1501	1158
1750	4851	$30-$										
1761	4852	80 Mar	1808		1678	S 17 Mar	18	δ	Anwa		1502	1150
－${ }^{\text {－}} 1762^{*}$	58	$29-$	1809	Ashad	1674	Th 5 Miar	16	6	Kart		1503	1100
N S 1758	54	9 Apr	1810		1678	Wo \ddagger Apr	17.	7	Agra		$180 \pm$	1181
$178 \pm$	55	$10-$	1811		1676	No 28 Mar	18		Pauah		1508	16
1758	56	$10-$	1812	Jyesh	1077	Fr 14 Mar	20		Phal		1500	89
1785 +1756	57	$10-$		Jyenh	1678	Th 1 Apr	21	10	Ohat		1507	84
1757	58			A	1679	Mo 21 Mar	22	11	Vars		508，	168
1788	${ }^{\circ}$	$10-$									1509	1166
1788	69	$10-$			1680	S 9 Apr	23	12	Ascad			1167
1769	60	$10-$	1816		1681	Ir 30 Mar	26	18	Ashad			1188
＋1780	4881			Srity	1682	Ta 18 May	25	14	Srav		1811	1168
			1818		1683	Fr 6 Apr	26	15	Bhid		1512，	1169
1762		10 Apr	1819		1684	Sa 27 Mar	27		Aswa		1519	1170
1768		10 10			1685	We 16 Mar	28		Kart		1514	1171
1768 +1764		$10-$		Jyesh	1656	Mo 2 Apr	20	18	Agra		1515	1172
${ }^{*} 1764$	65	$9-$	1821		16S6	Mo 2 Apr Sa 23 Mar	20 80	18	Paush			1173
1768	66	$10-$	$\left\lvert\, \begin{aligned} & 1822 \\ & 1823\end{aligned}\right.$		1687	Sa 23 Mar We 12 Mar	80 31	20	Pangh Megh		1517	1174
1766	67	$10-$	1823	Chait	1688	We 12 Mar	31 32	20 21	Phal		1518	3
1767 +1768		$10-$	$1 \begin{aligned} & 182 t \\ & 1825\end{aligned}$		1689	Ta 31 Mar Fr 19 Mar	32 83	21 22	Ohalt		151	176
＋1768	68	$9-$	1825		1690		88 84	23	Vain		1520	1177
1769	70	$10-$ $10-$	1826		1691	Sa 8 Apr We 23 Mar	2835	82．24	Jyeah		1521	1178
1770		10 －	1827		1692	We 23 Mar						

TABLT XVII,-(Continued,)

General Table of Corresponding Dates

A. D.	golat-YEar		LUMI-SOLAR-TEAR				Jupiter-Ctolen.				$\begin{aligned} & \text { g } \\ & 0 \\ & \text { 合 } \\ & 0 \end{aligned}$	-
	$\begin{aligned} & \text { Kali } \\ & \text { Yuga } \end{aligned}$	Initial Day	$\left\|\begin{array}{c} \text { Vik } \\ \text { Sam } \end{array}\right\|$	Interal Month	$\left\lvert\, \begin{aligned} & \text { Sak } \\ & \text { Bal } \end{aligned}\right.$	Initial Day	60 Yeara		$\begin{gathered} 12 \\ \text { Yearn } \end{gathered}$			
							8 Sid	Tel				
1771	4872	10 Apr	1828	Aahad	169s	S 17 Mar	2986	8225	Anhad	47	152	11
${ }^{+1772}$	73	9 -	1829		1894	Th 4 Mar	87	28	Srav		1828	1180
1778	74	10	1830		1895	Th 25 Mar	38	27	Bhtd	48	1824	181
1774	75	10	1831	Tals	1896	Mo 14 Msr	88	28	Aswa		1525	2
1778	78	$10-$	1882		1897	S 2 Apr	40	29	Kart	51	1828	88
${ }^{1778}$	77	9 -	1838	Bhad	1698	Th 21 Mar	41	80	Agra	5	1527	4
1777	78	$10-$	1884		1698	We 9 Apr	42	81	Pauah	58	1528	1186
1778	79	$10-$	1835		1700	Mo 30 Mar	48	82	Magh	54	1529	8
1779	80	10-	1836	Sriv	1701	Fr 19 Mar	44	88	Pb 4		1580	1187
+1780	4881	θ	1837		1702	We 6 Apr	48	34	Ohat		1881	1189
1781	4882	10 Apr	1838		1703	Mo 26 Mar	48	85	Vals	87	1532	1189
1782	83	10-	1889	Jyeeh	1704	Fr 15 Mar	47	86	Jyenh		1638	1190
1788	84	$10-$	1840		1705	Th 3 Apr	48	37	Ashad		1834	1191
*1784	88		1841		1700	Mo 22 Mar	49	88	Srav		1535	92
1785	86	10 -	1842	Chait	1707	Sa 12 Mar	80	89	Bhed	51	1838	1193
1788	87	$10-$	1849	.	1708	Er 81 Mar	81	40	Aswa	82	1837	-
1787	88	10 -	1844	griv	1709	Tu 20 Mar	82	41.	Kirt		15.5	908
${ }^{*} 1788$	89	10	1845		1710	Tu 8 Apr	58	42	Agra		1539	1196
1780	80	10	1848		1711	Sa 28 Mar	84	43	Paush		1540	197
1790	4891	$10-$	1847	Ashed		We 17 Mar			Magh		1541	1198
1701	4892	10 Apr	1848		1718	Tr 5 Apr		45	Phal		1842	1188
${ }^{1} 1702$	98	$9-$	1848		1714	Sa 24 Mar	57	48	Chalt		154	1200
1788	94	$10-$	1850	Vais		Th 14 Mar	58	47	Vais		1644	01
1794	95	$10-$	1851		1716	Tu 1 Apr	89	48	Jyemh		154	2
1796	98	$10-$	1852	Bhad		S 22 Mar	60	49	Aehad		16	
${ }^{*} 1798$	97	10-	1858		1718	St 9 Apr	3081		grav			4
1797	98	$10-$	1854			We 29 Mar		51	Bhad		184	08
1798	90	$10-$	1858	Brav	1720	g 18 Mm		62	Anwa	7	154	1206
1790	4900	10	18888		1721	St 6 Apr		68	Kirt		1580	08
${ }^{-1800}$	4801	11 -	1887	-	1722	Th 27 Mar	308	82.64	Agra		1851	1206

TABLE XVII.-(Continued.)
General Table of Correupunding

TABLs EVII.-(Oontinued.)
Goneral Table of Corresponding Datea.

+ Paushe oreveded, and Clualtra interenlary.

TABLE XVII.-(Continued.)
General Table of Corresponding Dates.
A. D.

TABLIT XVII-(Continined.)

General Table of Corresponding Dates

TABLㅍ XVII.-(Continued.)

General Table of Consesponding Dates

A D	Solab-Yxat		Lumt Solab-Ygab				Jupineu Ciches				霛
	Kalı Yuga.	Initial Day	VikSam	Intercal Month	$\begin{aligned} & \text { Snk } \\ & \text { Sal } \end{aligned}$	Itital Day	60 Years		$\begin{gathered} 12 \\ \text { Years } \end{gathered}$		
							8 sid	Tel			
1021	0022	13 Apr	1978	...	1843	Ba 9 Apr	327	8455	Màgh	97	1300
1922	23	13 -	1979		1844	We 29 Mar	8	66	Phal	98	1301
1323	24	18 -	1980	Jyeeh	1846	$3 \quad 18 \mathrm{Mar}$	9	57	Chait	$\varepsilon 9$	1702
*1924	24	$13-$	1981		1846	S 6 Apr	10		Vass	100	1303
1925	26	$13-$	1982		1817	Th 26 Mar	-12		Ashad	I	1304
1926	27	18 -	1983	Chatt	1848	Mo 16 Mar	1.3	60	Srût	2	308
1997	28	13 -	1984		1849	S 3 Apr	14	851	Bhad	3	306
*1828	20	13 -	1986	Srât	1850	Fr 23 Mar	15	2	Aswa	4	1307
1929	30	$13-$	1986		1861	Th 11 Apr	16	8	Kart	6	308
1830	5031	$13-$	1987			Mo 31 Mar	17	4	Agra	6	1309
1991	6032	13 Apr	1988	1 Hhad	1863	Fr 20 Mar	18	6	Paush	7	1310
-1932	33	$13-$	1989		18 t	Th 7 Ap	19	6	Magh	8	1311
1983		$13-$	1090		.85s	Mo 27 Mar	20	7	Pbàl	9	1312
1934	3	13 -	1991	Vais	1856	Sa 17 Mar	21	8	Chart	10	,
1935	36	14 -	1092		1857	Fr 5 Apr	22	9	Vals	11	1 t
* 1436		$13-$	1903	Blad	1858	Tu 21 Mar	23	10	Jyesh	12	18
1837	38	$13-$	1994			30 12 Apr	24	11	Ashati	15	316
1998	14	13 -	1996		1800	Fr 1 Apr	25	12	Srůu	14	1317
1930	$41)$	14 -	1996	Srar	1861	Ke 22 Mar	24	13.	Bhad	15	318
*1840	6041	$13-$	1997			Tu 9 Apr	27	14	Aswa	16.	1318
1941	5042	13 Apr	1498		1863	Sin 29 Mar	28	18	Kart	17	1320
1942	43	$13-$	1999	Jyesh		We 18 Mar	29	16	Agra	18	1321
114:	44	14 -	2000			We 7 Apr	80	17	Pausb	19	1322
*1944			2001		1866	\$ 26 Mrr	31	18	Magh	20	1323
1945	46	13 -	2002	Chast	1867	Th 16 Mar	32	19	Pbul	21	1324
1946	47	13	2003		1868	Tu 2 Apr	33	20	Chait	22	1325
1947	48	14	2004	Sráv		S 23 Mar	34	21	Vais	23.	1396
-1048	49	13	2005		1870	Ss 10 Apr	35	22	Jyesh	34	1425
1940	50	13	2006		1871	We 30 Mar		23	Ashind	20	1328
1900	50 n 1	13	2007	Ashad 1	1872	Mo 20 Mar	3237	8.524	Slet	26	1829

TABLE XVII.-(Continued.)

General Table of Corresponding Dates

TABLE XVII.-(Continued.)

General Table of Corresponding Dates

A, D	Solab-Year		Luni-Solar-Year				Jutiter-Cyoles				豈
	$\begin{array}{r} \text { Kalı } \\ \text { Yugan } \end{array}$	Initial Day	$\left\lvert\, \begin{gathered} \text { Vik } \\ \text { Sam } \end{gathered}\right.$	Intercal Month	$\begin{aligned} & \text { Sar } \\ & \text { Sall } \end{aligned}$	Initial Day	60 Years		$\underset{\text { Years }}{12}$		
							S Sid	Tel			
1981	8082	13 Apr	2038	.	1908	S 5 Apr	338	8555	Phàl	67	1360
1982	83	14 -	2039	Asma	1004	Fr 26 Mar	9	66	Chast	58	1361
1083	84	14 -	2040		1905	Th 14 Apr	10	87	Vals	59	1362
1984	88	$13-$	2041		1906	Mo 2 Apr	11.	88	Jyeah	60	1963
1985	86	$13-$	2042	Srat	1907	Mo 22 Mar	12	80	Ashad	61	1964
1986	87	14 -	2043		1908	Fr 11 Apr	19	60	Sráp	62	1368
1987		14 -	2044		1909	Tu 31 Mar	14	861	Bhad	68	1366
1988		13	2045	Jjosh	1910	Sa 19 Mar	15		Aswa	64	1987
1989		$13-$	2046		1911	Fr 7 Apr	16		Kart	68	1968
1990	8091	14-	2047		1912	Wo 28 Mar	17.	4	Agra	66	1360
1991	8092	14 Apr	2048	Vels	1913	317 Mar	18	8	Paush	67	1870
1992		13 -	2019		1914	Sa 4 Apr	18		Magh	68	1371
1993		14 -	2050	Bhed	1915	Th 25 Mar	20	7	Phál	69	1372
1994		14 -	2081		1916	6 Tu 12 Apr	21	8	Chait	70	1373
1995		14 -	2052		1917	7 Sa 1 Apr	22	3	Vala	71	1374
1096	97	13 -	2053	Ashad	1918	8 Th 21 Mar	23	10	Jyesh	72	1378
1997		$14-$	2084		1919	We 9 Apr	24	11	Ashad	78	1376
1908	99	14 -	2085		1920	S 29 Max	25	12	8rât	74	1377
1999	8100	14	2056	Jyesh	1921	1 Th 18 Mar	26	13	Bhad	15	1378
2000	8101	13	2087		1922	2 We 6 Apr	3327	8614	Aswa	76	1378

TABLEXVIIT.
Lust of Eclipses

A D	Lunar.	Solar.	AD	Luxar.	Solaz
1	24 June	10 June	51	14 Apr - 8 Oot	29 Sep
2	15 May - 9 Nov	23 Nov	82		19 Mar
3	4 May - 28 Oot		53	$21 \mathrm{Feb}-18 \mathrm{Ang}$	9 Mar
4	23 Apr - 17 Oct	${ }_{28}^{8} \mathrm{Mar}-22 \mathrm{Sep}$	5	${ }_{31} 1 \mathrm{Feb}$ - $7 \mathrm{7an}$ Aug	23 July - 26 Fob
6	3 Mar - 27 Ang	28 Mar - 22 Sep	56	10 Dec	15 July - 25 Deo
7	20 Feb - 17 Aug	6 Feb - 31 Aag	57	5 June - 29 Nov	
8	9 Feb - 5 Aug	26 Jan	58	26 May - 19 Nov	11 May
9	20 Dec	$15 \mathrm{Jan}-10 \mathrm{July}$	59		$80 \mathrm{Apr}-250 \mathrm{Ot}$
10	15 June - 10 Dec	30 June - 24 hov	60	$4 \mathrm{Apr}-28 \mathrm{Sop}$	13 Oct
21	1 Jnne- 29 Nov	$1+\mathrm{NeV}$	62	$24 \mathrm{Mar}-18 \mathrm{Sep}$	$10 \mathrm{Mar}-20 \mathrm{ct}$
12	24 Mny	9 May	62	13 Mar - 7 Bep	28 Frbb
13	$14 \mathrm{Apr}-7$ Oot	28 Apr	63		17 Feb
14	${ }_{2}^{4} \mathrm{Apr}-27 \mathrm{Smp}$	18 Apr	64	22 Jan - 17 July	1 Ang
16	24 Mar - 16 Sep	${ }_{\text {21 }}^{\text {2 }}$ Aup	65	$\left\{\begin{array}{c}11 \text { Jan-6 July } \\ 31 \mathrm{Deo}\end{array}\right\}$	16 Deo
17	10 Jan - 27 July	$1{ }^{\text {a }}$ Feb	$6{ }_{6}$	26 June	
18	20 Jnn - 16 July	1 July	67	$17 \mathrm{May} \mathrm{-} 9 \mathrm{Ncv}$	31 May
19	9 Jna - 5 July	21 June - 15 Dec	68	6 May - 29 Oot	19 May
20	$25 \mathrm{May}-19 \mathrm{Nov}$	10 Junc - 3 Dec	69 70	$25 \mathrm{Apr}-18$ Oot	$\begin{aligned} & 4 \text { Oct } \\ & 23 \text { Sep } \end{aligned}$
21	$15 \mathrm{May} \mathrm{-} 8 \mathrm{Nor}$	23 Nov			
22	4 May - 28 Oct	10 Apr	71	4 Mar - 29 Ang	20 Mar
23			72	$22 \mathrm{Feb}-17 \mathrm{Aug}$	$2{ }_{2}^{2} \mathrm{Aug}$
25	14 Mar - 6 Sap	218 Bp	73	$11 \mathrm{Feb}-6$ Aug	12 July
20	$20 \mathrm{Feb}-16 \mathrm{Aug}$	${ }_{6} \mathrm{Feb}$	75	17 June - 11 Dec	5 Jan - 26 Deo
27	31 Deo	26 Jen - 22 July	76	5 June - 29 Nov	21 May
28	2i June - 20 Dec	10 Jnly	77		
29	14 June - 9 Dec	24 Nov	78	16 Apr - 8 Oct	$30 \mathrm{Apr}-24$ Oct
10	4 June	21 May - 14 Nov	79 80	$\begin{array}{r} 5 \mathrm{Apr}-20 \mathrm{Bep} \\ 24 \mathrm{Mar}-17 \mathrm{Bep} \end{array}$	$130 \mathrm{ct}$
31	2; Apr - 19 Oot	10 Mry			
32	$1+\mathrm{Apr}-7$ Oct	28 Apr	81		27 Feb - 23 Ang
34	$3 \mathrm{Apr}-27 \mathrm{Sep}$	12 Spp	82	$2 \mathrm{Feb}-28$ July	12 Aag
34		$9 \mathrm{Mar}-1$ Sep	83	22 Jan - 17 July	$2 \mathrm{Aug}-27 \mathrm{Dec}$
35	11 Feb - 7 Aug	-	81	11 Jan - 6 July	$16 \text { Deo }$
36	31 Jan - 26 July	16 Feb - 12 July	85	27 May - 20 Nov	10 June
37	$20 \mathrm{Jan}-15 \mathrm{July}$	1 July - 25 Dec	R6	17 May - 9 Nar	${ }^{31}$ May
38 39	${ }^{30} \mathrm{Nov}$ May - 19 Nov	21 June	87 88 8	6 May - 30 Oot	15 10 Oot $10 \mathrm{pr}-30$
40	$15 \mathrm{May} \mathrm{-} 7 \mathrm{Nov}$	29 Apr	84	$15 \mathrm{Mar}-8 \mathrm{gep}$	30 Mar
			90	4 Mar - 28 Aug	20 Mar
41		$19 \mathrm{Apr}-19$ Oct			
42	${ }^{25} \mathrm{Mar}$ - 18 Map	$2{ }^{2} \mathrm{OLt}$	91	22 Feb - 17 Ang	
48	14 Mar $2 \mathrm{Mar}-27 \mathrm{Sap}$	28 FPb	92		27 Jun - 27 July
44	$2 \mathrm{Mur}-27 \mathrm{Aug}$	17 Feb 1 Aug	93 94	17 Janne - 210 Dec	5 Jan - 1 Jnne
46		22 July - 16 Dec	$8{ }^{8}$	${ }_{26} 6$ Jane - 20 Oct	$22 \mathrm{May}$
47	$\underset{26 \mathrm{Jane} \rightarrow 21 \mathrm{Dec}}{ }$		97	$26 \mathrm{Apr}-20$ Oct $15 \mathrm{Apr}-9$ Oot	10 May - 8 Not
48	lf June	31 May-2i Nor	88	$4 \mathrm{Apr}-28 \mathrm{Sep}$	21 Mar
49	6 May - 29 Oct	20 May	99		3 Sep
50	$2 \overline{\text { 2 }}$ Apr - 18 Oct	9 May	100	13 Feb - 7 Ang	28 Ang

TABLE XVIII.-(Continued.)
List of Eclupses

$A D$	Lunar.	Solar.	$A \mathrm{D}$	Lunaz	Solar
101	1 Feb-28 July	$17 \mathrm{Jan}-12 \mathrm{Ang}$	151	18 May - 11 Nov	$\left.2{ }^{2}\right)^{\text {Y }}$
102	$22 \mathrm{Jua}-17 \mathrm{July}$	27 Dea	152	6 Muy - 31 Oct	$2: A_{1} \mathrm{r}$
103	1 Dec	23 Jnne	153	2 L Apr	1) Apm
104	27 May - 19 Nov	10 June	104	17 Mnr - 9 Sep	11 Mut-- ${ }^{5} 5 \mathrm{SLp}$
105 108	16 May - 9 Nov	25 Oct	1 lin	${ }_{2} \mathrm{Mnr}-30 \mathrm{Aug}$	
108	26 Mar - 20 Sop	21 Apr 11 Apr	154 157	21 Feb - 18 Aug	25 Jan - $24 . \mathrm{Jmuo}$
108	13 Mar - 8 Sep	30 $\mathrm{MaL}-24 \mathrm{Ang}$	158	$\{2$ Jan-39 June $\}$	2ヵ गan - -a Jnowo
109	$4 \mathrm{Mar}-28 \mathrm{Aug}$	$1+\operatorname{Aug}$	158	$\{23 \mathrm{Dec}$;	1) July
110		8 Aug	164 160	$\begin{gathered} \text { is June - } 12 \mathrm{Dec} \\ \text { o Juwe } \end{gathered}$	23 Muy
111	17 Jan - 8 July	27 Jan 12 Jman	161	22 Ort	12 Mny
112	16 Jan - 27 June	12 Jine - 1 June - fov		$17 \mathrm{Apr}-11$ Oct	2 May
114	310 ct	${ }_{23} \mathrm{May}$ - 15 Nov	163	6 Apr - 30 Sep	YA 58
115	26 Apr - 21 Oct	+ Nor	${ }^{164} 16$		¢ 4 kap
116	$1+\mathrm{Apr}-9$ Oct	31 Mar	16, 16,	$13 \mathrm{Frb}-{ }^{9} \mathrm{Aug}$ $2 \mathrm{Fcb}-30 \mathrm{July}$	$\begin{aligned} & 2 k k+b \\ & 18 \mathrm{l}+\mathrm{b} \end{aligned}$
117 118		21 Mar	1117	$23 \mathrm{Jon}-19 \mathrm{July}$	+July
118	$23 \mathrm{Feb}-18 \mathrm{Ang}$ $13 \mathrm{Feb}-8 \mathrm{Alug}$		110,	\& Dre	2, Juno- - 17 Dee
120	$2 \mathrm{Feb}-28$ July	18 Jan	117 170	28 M2y - 22 Nov 17 May - 11 Nor	$6 \text { Duc }$ $\sigma M_{n y}$
121	11 Deo	2 July	171	7 May	22 Apr
122	7 June - 1 Dec	21 June	172	$27 \mathrm{Mar}-19 \mathrm{Sep}$	50 ct
123	28 May - 21 Nov	6 Nov	173	17 Mar - 9 Sep	
124		1 May - 25 Oct	$17 \pm$	6 Mar - 30 Aug	19 Feb
12 B	$5 \mathrm{Apr}-30 \mathrm{Sep}$	21 Apr	175		8 Feb - 4 Aug
${ }_{126}^{126}$	$26 \mathrm{Mar}-19 \mathrm{Sep}$ $16 \mathrm{Mar}-8 \mathrm{Sep}$	${ }_{25}^{10} \mathrm{Apr}-4 \mathrm{Scp}$	176	17 Jnn- ${ }^{\text {J July }}$	23 July
128	16 Mar -	25 Aug	177	$\left\{23{ }^{\text {dec }}\right.$,	19 July - 8 Deo
129	23 Jan - 10 July	6. Feb	178	17 Juno	27 Yuv
130	12 Jan - 8 July	27 Jan - 23 June	174 180	${ }_{27}^{2}$ Novpr - 21 Oct	$\begin{aligned} & 24 \mathrm{M} \text { ty } \\ & 12 \mathrm{M} \text { ay } \end{aligned}$
191	1 Jan - 28 Jnne	12 June	181	$17 \mathrm{Apr}-10$ Oct	26 Sep
142 138 128	10 Nor	$1{ }^{1+}$ June - ${ }^{\text {a }}$; Nov	182		
178 154	${ }_{26}^{6} \mathrm{Mnyr}$ - 31 Oct	$1+\lambda o v$ $12 \mathrm{Apr}$	143	2) Fcb- 21 Aug $14 \mathrm{Feb}-9 \mathrm{Aug}$	11 Mar 29 l cbr
135	${ }_{15} \mathrm{Apr}$	1 Apr - 25 Sep	185	2 Feb-30 July	1+3uly
196	6 Mar -29 Ang 2	13 Sop	186	14 Des	$\int_{j}^{8} \mathrm{Jan}_{28}-4 \text { July }$
197 198	$29 \mathrm{Feb}-18 \mathrm{Aug}$ $12 \mathrm{Feb}-8 \mathrm{Aug}$	26 Sap	187	8 Tune - 3 Dee	$17 \mathrm{Drec}{ }^{28} \mathrm{Deo}$
139	23 Deo	18 Jun	188	$24 \mathrm{M}_{29}-21 \mathrm{Nor}$	$1+$ May
140	18 June - 11 Dec	2 July	189 190	17 Mry 8 Apr	$\begin{aligned} & \text { j Nay - } 27 \text { Oct } \\ & 2 \underset{\mathrm{Apr}}{ } \end{aligned}$
141	7 June - 1 Deo	21 June - 16 Nov	191	28 Mar - 20 Sep	6 Oct
142	27 May	19 May - 5 Nov	192	16 Mar - 9 ¢ep	1 Mar
143	17 Apr - 11 Oct	2 May	193		19 Teb
144	${ }^{5}$ Apr - 29 Sep	20 Apr	$19 \pm$	24 Jan - 20 July	4 Aug
145	26 Mar - 18 Sep	4 Sep	195	13 Jan - 10 July	24 July - 19 Dec
146		28 Feb	196	3 Jan - 28 June	7 Dec
147	3 Feb - 80 July	17 Feb	197	12 Nor	3 June
148	23 Jan - 19 July	${ }^{7}$ Jaly - 7 Feb	198	8 May - 1 Nov	27 May
149	11 Jnn - 8 July	23 June	199	$28 \Delta \mathrm{pr}-21$ Oct	7000
160	22 Nov	12 Jung - 6 Dec	200		1 Apr

TABLT XVIIL.-(Continued.)
List of Eclipses

A.D	Lunar	Solar	AD	Lumail	Solar
201	7 Mar - 81 Ang	22 Mar	251		$\begin{aligned} & 9 \text { Jan - } 6 \mathrm{Jaly} \\ & 24 \text { June } \end{aligned}$
2022	$24 \mathrm{Feb}-20 \mathrm{Aug}$	11 Mar	252	9 June - 3 Dec	24 June 14 June
203	${ }_{17} 9 \mathrm{Feb}-10 \mathrm{Aug}$	${ }^{20}$ July	253 254	30 May - 22 Noy 19 May - 12 Nov	14 June 4 May - 29 Oct
204	24 Dec	14 July	25.	19 May - 12 Nor	24 Apr
2051	18 Jane - 18 June	${ }^{28} 5 \mathrm{Meo}$	25.6	28 Mar	12 Apr
205	${ }_{28}^{8}$ Mnue - 3 Deo	25 May 14 May	257	$17 \mathrm{Mar}-11 \mathrm{Bep}$	28 Aug
2078	28 May 18 Apr	14 May 2 May	258	$7 \mathrm{Mar}-15 \mathrm{Aug}$	15 Aug
2081		2 May 16 Oct	259	26 Jan - 21 July	6 Aug
210	28 Mar - 20 Sep	18 Mar	260	15 Jan - 11 July	30 Jan
211		$2 \mathrm{Mnx}-25 \mathrm{Ang}$		4 Jan - 29 June	15 Jnne
212	$4 \mathrm{Feb}-81 \mathrm{Jnly}$	14 Ang	262		$4 \mathrm{Jnne}-29 \mathrm{Nov}$
213	24 Jan - 20 July	3 Ang	263	10 May - 3 Nor	18 Nov
214	13 Jau - 9 July		264	$25 \mathrm{Apr}-22 \mathrm{Oct}$	14 Apr
215		14 June	265	$17 \mathrm{Apr}-12$ Oct	
216	19 May - 12 Nov	2 June	266	8 Mar	24 Mar - 16 Sep
217	8 May - 1 Nov	18 Oot	257	26 Feb - 22 Ang	${ }^{51}$ Sep
218	$28 \mathrm{Apr}-21 \mathrm{Oct}$	$12 \mathrm{Apr}-7$ Oct	268	$15 \mathrm{Feb}-10 \mathrm{Arg}$	31 Jan
219	$18 \mathrm{Mar}-11 \mathrm{Sep}$	${ }_{22}^{2} \mathrm{Mpr}$	268		${ }_{6}^{16}$ July
220	6 Mar - 31 Aug	22 Mar	270	20 June - 15 Dec	5 July
221	24 Feb - 20 Aug	5 Ang	271	10 Jnne-4Deo	24 June - 20 Nor
222		90 Jan - 28 Jnly	272	30 May - 22 Nov	8 Nov
223	\{ $4 \mathrm{Jan}-30 \mathrm{June}\}$	19 Jan	273	4 May - 13 Oct	${ }_{2} 4$ May
22	$\{25 \mathrm{Dec}$		274	8 Apr - 3 Oct	$2 \pm \mathrm{Apr}$
224	18 June - 19 Dec	$8 \mathrm{Jan}-4$ June	275	$29 \mathrm{Mar}-22$ Sept	7 Sep - 26 Agg
228 226	8 Jnne	24 May - 17 Nov $7 \mathrm{Nov}$	276 278	${ }^{17} \mathrm{Mar}$	$\begin{aligned} & 9 \mathrm{Mar}-26 \mathrm{Ang} \\ & 20 \mathrm{Feb} \end{aligned}$
227	$19 \mathrm{Apr}-120 \mathrm{ct}$		278	26 Jan - 21 July	9 Feb
228	$7 \Delta \mathrm{pr}-10 \mathrm{ot}$	29 Mar	278	$15 \mathrm{Jan}-11 \mathrm{Ju} \mathrm{l}^{\text {y }}$	25 June - 21 Deo
229		13 Mar	280		14 June - 9 Dea
230	14 Fob	25 Aug			
231	4 Trb - 11 Ang	15 Aug	281	$21 \mathrm{May}-18 \mathrm{Nov}$	
232	25 Jan - 19 July	10 Jsan - 29 Deo	282	10 May - ${ }^{\text {2 }}$ Nor April 23 Oct	${ }_{15}^{25 \mathrm{Apr}}$ - B Oct
233		25 Jrne	283 284	29 Apri - 230 ct	$3 \mathrm{spr}-20 \mathrm{Sep}$
234	${ }^{30} \mathrm{May}$ - 23 Nuv	14 June - 29 Oct	28.	$8 \mathrm{Mar}-1 \mathrm{Sep}$	16 Sep
2335	20 May - 12 Nav	3 June - 27 Oct	2815 286	25 Feb - 21 Aug	11 Feb
236 237	82 May - 31 Oct 22 Sep	23 Apr - 17 Oct	287	10 Ang	31 Jan - 27 Jnly
238	18 Mar - Il Sep	2 Apr	288	1 July - 25 Deo	16 July
238	7 Mar - 1 Sep	16 Ang	289	20 June - 14 Deo	5 July - 80 Nov
240	10 Feb	5 去 5	290	10 Jnne - d Deo	19 Noy
241	$15 \mathrm{Jan}-10 \mathrm{Jnly}$	29 Jan	291	25 Ot	15 May
212	$\left\{\begin{array}{c}4 \text { Jen- } 29 . \\ 24 \text { Deo }\end{array}\right\}$	15 Jane	292	$19 \mathrm{Apr}-13$ Oot	${ }_{17} \mathrm{Maj}^{\text {Say }}$
243	$19 \text { June }$	5 Jnue	293	$8 \mathrm{Apr}-2$ Oct	17 Sep 14 Sar 7 Sep
244		24 May	294	28 Mar	14 Mar - 7 Sop
245	$29 \mathrm{Apr}-2200{ }^{\text {O }}$	7 Nov	295	${ }_{6}^{17} \mathrm{Feb}$ - 81 Jnly	
246	$18 \mathrm{Apr}-12$ Oot	${ }^{34} \mathrm{Apr}$	296	25 Jgn-21 July	6 July - 31 Dee
247	${ }_{26}{ }^{\text {Oct }}$ Feb-21 Ang	24 Mar	298	25 Ja -	25 June - 20 Deo
240	14 Feb - 10 Ang	25 Ang	279	$1 \mathrm{Jnne}-24 \mathrm{Nov}$	10 Deo
250	4 Feb-80 July	20 Jan		20 May - 13 Nut	5 Ming

TABLIF XVIII-(Continaed.)
Last of Eclupses

A 1	Lunar	ditan	A D	Luvar	Solar
301	9 May - 3 Nov	25 Apr	3015	$27 \mathrm{Feb}-23 \mathrm{Aug}$	$8{ }^{8}$ Aug ${ }^{\text {a }} 27$ July
802		8 Oct	35212	12 Aug 25 ta	2 Feb-27 July
308	$19 \mathrm{Mar}-12 \mathrm{Sop}$	27 Sep	351	3 July - 26 Dec 22	22 Jnu - 17 July
804	8 Mar - 31 Aug	22 Ftb	${ }^{8} 54.4$	22 June - 16 Dec 1	11 Jau - 7 June
${ }^{305}$	21 Aug	$10 \mathrm{Feb}-7 \mathrm{Aug}$		11 June - 6 Dec 2	$\begin{aligned} & 28 \text { May } \\ & 16 \text { May - } 0 \text { Nav } \end{aligned}$
306	12 July (5) 2 July ${ }^{\text {d }}$	27 July	3 3 85 3	$20 \mathrm{Apr}-14$ Oct	
307	$\left\{\begin{array}{c}5 \mathrm{Jau}-2 \mathrm{July} \\ 25 \mathrm{Dec}\end{array}\right\}$	16 July	758	10 Apr - 3 Oct	${ }^{26}$ Mar
308	20 June - 14 Dec	30 Nov	379	11 Mar - 23 Sep	13 Mar
809	4 Nov	25 May	360	11 Aug	" ${ }^{\text {Aug }}$
310	30 Apr - 2 aj Oct	16 May			
			361	6 Feb - 3 Aug	17 Aug
311	19 Apr - 14 Oct		362	${ }^{66} \mathrm{Jan}$ - 23 July	
812	8 Apr	17 Sep	163	16 Jan	2 Jan
913	27 Fub	7 Sep	464	1 Juno - 26 Nov	16 June
314	$17 \mathrm{Feb}-12 \mathrm{Aug}$	3 Mar	365	21 May - 15 Nov	6 June
315	${ }_{6} \mathrm{Feb}$ - 1 Aug	18 July	466 367	11 May - 4 Nov	20 Oct 15 Apr - 10 Oct
816 817		6, duly - 31 Doc 20 Dec	367 468 68	21 Mar - 19 Sep	$\begin{aligned} & 15 \mathrm{Apr}-10 \text { Oct } \\ & 3 \mathrm{Apr} \end{aligned}$
317 818 818	11 June - $6+$ Dec 91	20 Dec 16 May	968	10 Mar - 2 Sep	
319	$20 \mathrm{May}-14 \mathrm{Nor}$	6 May	370		8 Ang
320		$25 \mathrm{Act}-180 \mathrm{ct}$	371	14 July	2 Fob - 28 July
321	30 Mar - 23 Sep	8 Oot	372	$\{7 \mathrm{Jan}-2 \mathrm{July}\}$	22 Jau
422	19 Mar - 12 Sep	4 Mar		1 26 Dec	
323 324	${ }_{22}^{1} \mathrm{Sep}$	${ }^{21} \mathrm{Ftb}$	873 374	21 june - 16 Dec	$27 \text { May - } 20 \text { Nov }$
- 25		26 jury - 22 Dec	37.	2 Mny - 260 Oct	10 Nov
326	$\left\{\begin{array}{c}\text { EJan-1 July } \\ 2 ; \mathrm{D} \text { - }\end{array}\right\}$	11 Dec	776 377	$20 \mathrm{ipr}-140 \mathrm{ct}$ $10 \mathrm{Apr}-30 \mathrm{ct}$	25, Mar
327		${ }^{6}$ Tune	378		$15 \mathrm{Mar}-8 \mathrm{Sep}$
328	10 Map - 4 Nor	2 2, ${ }^{\text {a }}$	789 380	17 Feb- 14 Aug	28 Aug 24 Jan
329	$29 \mathrm{Apr}-24 \mathrm{Oct}$	9 Oct	380	$7 \mathrm{Fob}-2 \mathrm{Aug}$	
330	$19 \mathrm{Apr}-13$ C'ot	28 Sep	981	26 Jau 7	12 Jan - 8 July
431	10 Mar	${ }_{25} \mathrm{Mar}$	782	12 June - 7 Dec	27 June
332	29 Feb - 22 Aug	13 Mar	387	$1{ }^{1}$ Jnne - 26 Nov	$\begin{array}{ll}11 \\ 31 & \text { Nopt }\end{array}$
333	16 Feb-12 Aug	23 July	484	21 May - 14 Nov	31 Oct
334	1 Aug	17 July	385 786		
335	22 June - 16 Doo	11 Jan	786 387	$1 \mathrm{Apr}-24 \mathrm{Sep}$ $21 \mathrm{Mar}-14 \mathrm{Sep}^{\text {d }}$ (30 Aug
396 937 3	10 June - ${ }^{51}$ Das ${ }^{\text {Dos }}$	27 May 16 May	387 388 88	21 Mar - $14 \mathrm{Sep}^{\text {Mar }} 2 \mathrm{Sep}$	18 Aug
\$38	s1 May - 24 Nov	${ }^{6} \mathrm{May}$	389		12 Feb
839	$10 \mathrm{Apr}-40 \mathrm{Ot}$	19 Oct	390	17 Jau - 13 July	
340	$30 \mathrm{Mar}-22 \mathrm{Sep}$	14 Mar			
341	19 Mar - 11 Sep	4 Mar	891	$\left\{\begin{array}{c}7 \text { Jan -2 July } \\ 27 \text { Deo }\end{array}\right\}$	18 June
342	3 Aug	17 Aug	392		20 June
344	27 Jan - 23 July	6 Aug	394	12 May - 5 Nov	20 Nor
444	16 Jan - 12 July	2 Jan - 21 Dec	394	2 May - 25 Oct	16 Apr 6 Apr
345	4 Jau	16 June	995	$21 \mathrm{Apr}-14$ Oct	6 Apr
846 347	21 May - 15 Nor	${ }^{60}$ June	396 397		
347 348	11 May - 4 Nov $29 \mathrm{Apr}-23 \mathrm{Oct}$	20 Oot	397 398	28 Feb - 14 Aug	3 Feb
349	21 Mar	1 Apr	489	7 Feb	29 Jau - 10 July
380	10 Mar - 2 Sep	24 Mar	400	22 Jane - 17 Deo	8 July

TABLE XVIII.-(Continued)
Last of Eclipses

A D	Lunar	Solatt	A 1	Lunar.	Solar
401	12 Tune - 6 Dec	27 June	4 I 1	$2 \mathrm{Apr}-26 \mathrm{Sep}$	
4021	1 June - 25 Nov	11 Nov	4×2	$21 \mathrm{Mrr}-15 \mathrm{Sep}$	7 Mar
403		7 May - 31 Oct	4.5	11 Mar - 4 Sop	24 Feb
$40+$	11 Apr - 4 Oct	2 a Apr	451		$14 \mathrm{Ficb}-10 \mathrm{Aug}$
40 S	31 Mar - 24 Sep	15 Apt - 3 sep	12:	$19 \mathrm{Jan}-15 \mathrm{July}$	fol July
406 407	20 Mar - 14 Sep	$6 \mathrm{Mar}-2^{9} \mathrm{Aug}$ $24 \mathrm{Feb}-19 \mathrm{Aus}$	4%	$\left\{\mathrm{gJan}_{2 / \text { - }{ }^{\text {dec }} \text { July }}\right\}$	13 Dec
408	$29 \mathrm{Jau}-9+$ July	13Feb	457		8 June - 3 Dee
409	17 Jan - 13 July	29.June	4,8	14 May - 6 Nor	28 Mry
410	7 Jan	18June - 12 Dee	459 460	$\begin{array}{r} 9 \mathrm{May}-27 \text { Oct } \\ 21 \mathrm{Apt}-16 \text { Oct } \end{array}$	$\begin{aligned} & 18 \text { May }-12 \text { Oct } \\ & 30 \text { Sep } \end{aligned}$
411	23 May - 16 Nov				
412	12 May - ${ }^{4} \mathrm{Nov}$	27 Apr	4.11		$27 \mathrm{Mar}-20 \mathrm{scp}$
413	2 May - 26 Oct	16 Apr	462	$2 \mathrm{Mar}-25 \mathrm{Ang}$	17 Mar
414		6 Apr - 30 Sep	463	$19 \mathrm{Feb}-15$ Aug	1 Aug
415	11 Mar - 5 Sep	19 Sep	464	9 Fub - 9 Aug	20 July
416	$28 \mathrm{Feb}-21$ Aug		465	24 June - 18 Dec	13 Jan - 9 July
417	17 Feb - 13 Aug	3 Feb	460	14 June - 7 Deo	${ }^{2} \mathrm{Jnn}$
418	29 Deo 18 Dec	19 July	447	3 Juna - 27 Nov	19 May
419 420	23 June - 18 Dec	8 July - 3 Dee	468		${ }_{21}^{81 \mathrm{May}}$ - 1 Nov
			4610 470	12 Apr $1 \mathrm{Apr}-26 \mathrm{Sop}$	
421 422	22 Apr - 16 Oct	$\begin{aligned} & 17 \text { May } \\ & 6 \text { May } \end{aligned}$		$22 \mathrm{Mar}-15 \mathrm{Sep}$	7 Mar
423	$12 \mathrm{Apr}-6$ Oct	26 Apr	471	-2 Mar - 16 Sep	20 Aug
424	31 Mar - 21 Sep	9 Sep	475	30 Jan - 25 July	9 ALg
425		6 Mar - 29 Aug		$19 \mathrm{Jan}-15 \mathrm{July}$	4 J 3 n
420	8 「eb - 1 Aug	23 Feb	40	8 Jan - 4 July	19June
427	29 Jan - 24 July	10 July	576	24 May - 17 Nov	7 June
428	$18 \mathrm{Jan}-12 \mathrm{July}$	22 Dec	477	13 May - 6 Nor	28 May
429 430	${ }_{2} 3$ June - 27 Nov	12 ivec	478	2 May - 27 Oct	12 Oct
430	23 May - 16 Nov		479 400	$12 \mathrm{Mar}-5 \mathrm{Sep}$	$\begin{aligned} & 8 \mathrm{Apr}-10 c t \\ & 27 \mathrm{Mar} \end{aligned}$
431 432	13 May - 5 Nov	27 Apr $16 \mathrm{Apr}-10$ Oct			
432	21 Mar - 15 Sep	16 Apr - -10 Oct 29 Sep	$4 ¢ 3$ 482	$2 \mathrm{Mar}-25 \mathrm{Aug}$ $19 \mathrm{Feb}-1+\mathrm{Aug}_{\mathrm{g}}$	${ }_{11}{ }^{\text {a }}$ Aug
434	11 Mar - 4 Sep	25 Feb	483	6 July - 30 Dec	$2+$ Jan
435	28 Feb - 24 Aug	14 Feb	484	24 June - 18 Dec	14Jan
436		$3 \mathrm{Feb}-29 \mathrm{Jaly}$	445 486	14 June - 7 Deo	${ }^{29} \mathrm{May}$ May - 12 Nov
437		$13 \mathrm{Dec}-19 \mathrm{July}$	487	23 Apr - 18 Oct	1 Nov
438 439	23 June - 17 Dec	3 Deo	488	$12 \mathrm{Apr}-6$ Oct	29 Mar
449 448	3 May - 26 Oct	17 May	489 491	$1 \mathrm{Apr}-25$ Sep	18 Mar i Mar
441	$22 \mathrm{Apr}-16$ Oct	6 May - 1 Oct	491	10 Feb - 5 Ang	21 Aug
442	$11 \Delta \mathrm{pr}-5$ Oct	20 Sep	492	30 Jan - 25 July	15 Jan
443	$19 \mathrm{Feb}-14$ Aug	17 Mar	413	18 Jan - 15 July	4 Jan
4tt	$19 \mathrm{Feb}-14 \mathrm{Aug}$		44	5 June - 28 Nov	19 June
145 446	$8 \mathrm{Feb}-3$ Aug	20 July	4	25 May - 18 Nov	8 June - 3 Nov
448	14 June - 24 - July	10 July ${ }^{29}$	$41 / 2$	13 May - 6 Nov	22 Oot
4	14 June - 86 Dec 3 June 26 Nor	29 June - 23 Dec	497 448	$23 \mathrm{Mar}-16 \mathrm{Bep}$	18 Apr 7 Apr
449	23 May - 16 Nov	8 May	490	13 Mar - 5 Sep	22 Aug
460			600	1 Mar - 25 Aug	10 Aug

TABLP XVIII-(Continued.)
Lust of Eclıpses

TABLE XVIII.-(Continaed.)
Lust of Eclupses

A D	Lunar.	Solat.	AD	Lukam.	Bolar.
601	24 Mar - 17 Sep	10 Mar	661	12 Jan - 8 Jaly	27 Jan - 28 Juue
602		22 Ang	652	1 Jan - 27 June	11 Juas
603	1 Feb - 28 July	12 Aug	654	18 May - 10 Nov	1 Juae - 28 Nov
804	22 Jan - 16 J Jaly	$\left\{\begin{array}{c}7 \mathrm{Jan}-1 \mathrm{Ang} \\ 26 \mathrm{Dec}\end{array}\right\}$	854 605	$\begin{aligned} & 7 \mathrm{May}-31 \text { Oot } \\ & 26 \mathrm{Apr}-21 \text { Oot } \end{aligned}$	$12 \mathrm{Apr}$
805	11 Jan - 6 Joly	22 June - 18 Deo	656		$31 \mathrm{Mar}-28 \mathrm{Bep}$
606	27 May - 20 Nov	11 June	657	5 Mar - 29 Ang	13 Sep
607	17 May - 0 Nov	31 May - 26 Oct	658	28 Feb - 18 Ang	88 Feb - 8 Bep
608 609	5 May - 29 Oct		659	$18 \mathrm{Feb}-8 \mathrm{Aag}$	
609 610	1 SMar - 8 Sep	10 Apr 30 Mar	660	22 Deo	18 Jan - 18 J aly
611	$4 \mathrm{Mar}-29 \mathrm{Agg}$	20 Mar	661	$\begin{array}{r} 18 \text { June - } 11 \text { Dec } \\ 7 \text { Jnne } \\ 1 \end{array}$	2 Juj y
612	$22 \text { Feb - } 17 \mathrm{Aug}$	2 Aug	668		
	\{ 1 Jan-27 Juce		664	16 Apr - 10 Oct	1 May
614	$\left\{\begin{array}{c}22 \mathrm{Deo} \\ 10\end{array}\right.$		665 666	$5 \mathrm{Apr}-30 \mathrm{Nep}$ $26 \mathrm{Mar}-18 \mathrm{Sep}$	$\begin{array}{r} 21 \mathrm{Apr} \\ 4 \mathrm{Sep} \end{array}$
615 616	16 June - 11 Deo	5 Jan - 2 Jane	667	26 Mar - 18 Sep	$28 \mathrm{Feb}-25 \mathrm{Ang}$
617	${ }^{5} 5 \mathrm{Jupo}$	21 Mny - 15 Nor 10 Mey - 4 Nap	668	$3 \mathrm{Feb}-29 \mathrm{Jaly}$	17 Feb
818	$15 \mathrm{Apr}-9 \mathrm{Oct}$	$1 \mathrm{Mpr}-24 \mathrm{Oct}$	669 670	23 Jan - 18 July	6 Feb
619 620	$4 \mathrm{Apr}-29 \mathrm{Sep}$	21 Mar $10 \mathrm{Mar}-2 \mathrm{Sep}$	670	12 Jan - 8 July	23 June - 18 Deo
621			671	22 Nov 17 May - 10 Not	12 Jane - 7 Doc
622	12 Fob - 88 Aug 1 Fob- 28	22 Aug 17 Jan - 12 Aug	672 673	17 May - 10 Nov 6 May - 31 Oot	${ }_{22} 2 \mathrm{Apt}$
823	22 Jan - 17 July	27 Deo	874		$12 \mathrm{Apr}-8000$
624	8 Jnae- 30 Nov	21 June	675	17 Mar - OSep	25 Sop
625	27 May - 20 Nov	10 Juae	678	8 Mar - 29 Ang	13 Sep
626	17 May - 9 Nov	28 Oct	677	23 Feb-18Aug	
627 828		$21 \mathrm{Apr}-15$ Oot	678		23 Jan - 24 July
828 829	25 Mar - 19 Sop 16 Mar - Sop	10 Apr	879	$\left\{\begin{array}{c}2 \text { Jan-29 Jane } \\ 29 \text { De0 }\end{array}\right\}$	13 July
630	4 Mar - 28 Ang	$13 \mathrm{Ang}$	880	17 June - 11 Deo	27 Nov
681		8 Ang	881	7 June	$23 \mathrm{Mey-18}$ Nov
632	18 Jan - 7 July	27 Jau	682	27 Apr - 22 Oot	12 May
688	$\left\{\begin{array}{c}1 \text { Jan- } 27 \text { June } \\ 21 \text { Dec }\end{array}\right\}$	12 June	688 684	18 Apr-11 Oot	2 May
834	18 June ${ }^{21}$ Deo	1 June	684 885	54 pr - 29 Sep	14 Sep 4 Sep
635	7 May - 31 Oct	15 Nov	886	14 Fob- 9 Aag	28 Fob
636	$26 \Delta \mathrm{pr}-20$ Uot	${ }_{11} \mathrm{Apr}-3 \mathrm{Nov}$	687	3 Feb - 80 July	15 July
687	$15 \Delta \mathrm{pr}-9$ Oct	1 Apr	888	28 Jan - 18 July	9 July - 28 Dec
638		21 Mar	089	2 Deo	22 June - 17 Deo
889 840	${ }_{23} \mathrm{Feb}-19 \mathrm{Aag}$	8 Sep	690	28 May - 22 Nov	6 Deo
			691	$17 \mathrm{May} \text { - } 11 \mathrm{Nor}$	${ }^{8} \mathrm{MLay}$
641	12 Deo - 27 July	17 Jgn 2 July	692 698	${ }_{2}^{6} \mathrm{May}$ - 20 Sep	${ }_{5}^{22} \mathrm{Apr}$
643	7 Jone - 1 Deo	21 Jane	694	17 Mar - 9 Sep	
644	27 May - 18 Nov	6 Nov	695	$8 \mathrm{Mar}-29 \mathrm{Aug}$	19 Feb
845	5 Apr - 30 Sop	$11 \mathrm{May}-250 \mathrm{ct}$	698 897		
847	26 Mar -19 Sep	18 Mpr 4 Sep		$\begin{aligned} & 18 \text { Jan }-9 \text { July } \\ & 29 \text { Jan- June } \end{aligned}$	
648	14 Mar - 7 Sop	24 Ang	698	$\left\{\begin{array}{c}22 \text { Deo }\end{array}\right\}$	18 July - 8 Deo
649 650	23 Jan - 18 July	$\begin{aligned} & 17 \text { Fob }-13 \Delta \mathrm{ag} \\ & 6 \text { Feb } \end{aligned}$	$\begin{aligned} & 698 \\ & 700 \end{aligned}$	18 June 1 Nov	$\begin{aligned} & 8 \text { June - } 27 \text { Nov } \\ & 28 \text { May } \end{aligned}$

TABLEXVIII.-(Continued.)
List of Eclupses

4 D	Lumar.	Solat.	\triangle D	Lusae	Solar.
701	$27 \mathrm{Apr}-1100 \mathrm{t}$	12 May	751	15 Pab-11 Aug	25 Aug
702	$16 \Delta \mathrm{pr}-10$ Oot	26 Bep	752	+ Feb-31 July	14 Aug
703		22 Mar	753	24 Jau - 20 July	$9 \mathrm{Jan}-29$ Dee
704	25 Fob - 19 Aug	10 Mar	754	4 Deo	25.5 Jnne
705	18 Fib - 9 Ang	28 Feb - 28 July	755	30 May - 23 Nov	14 June
706	2 Fob - 80 July	14 July	756	18 May - 11 Nov	28 Oot
707	18 Deo	4 July - 29 Deo	757	8 May	29 Apr
708	8 June - 2 Dea	17 Deo	758	29 Mar - 21 Sep	12 Apr
709	28 May - 22 Nov	14 May	759	18 Mar - 11 Sep	2 Apr
710	17 May	3 May - 27 Oct	760	6 Mar - 81 dug	15 Ang
711	7 Apr - 10 Oct	16 Oth	761		$5 \mathrm{Ang}$
712	27 Mar - 19 Sep	5 Oot	762	15 Jan - 10 July	30 Jan
718	17 Mar - 9 Sop	${ }_{19} 19 \mathrm{Par}$ Mar 15 Ang	763	$\left\{\begin{array}{c}4 \mathrm{Jun}-20 \mathrm{June} \\ 25 \text { Deo }\end{array}\right\}$	18 Jan - 16 June
715	$24 \mathrm{Jan}-21 \mathrm{July}$	$4 \Delta \mathrm{ng}$	764	18 June	4 Jone - 28 Nor
716	18 Jan - 9 July	23 Jnly	765	9 Mry	24 May
717	2 Jan - 28 Jane		768	29 Apr - 22 Oct	7 Nor
718	12 Nov	3 June	767	$18 \mathrm{Apr}-120 \mathrm{ot}$	3 Apr
719	8 May - 2 Nov	24 Msy	768		23 Mar 5 Sep
720	$27 \mathrm{Apr}-21$ Oot	6 Oot	769	25 Feb - 22 Ang $14 \mathrm{Fob}-11 \mathrm{Aug}$	5 Sep 25 Ang
721	7 Mar - 31 Aag	$\begin{aligned} & 1 \mathrm{Apr}-26 \mathrm{Sep} \\ & 21 \mathrm{Mar} \end{aligned}$	771	4 Feb - 81 July	
723	$24 \mathrm{Fob}-20 \mathrm{Arg}$	11 Mar	772	15 Deo	${ }_{5} 5$ July
72 l	18 Feb - 9 Aug	25 July	773	9 June - 4 Deo	24 June
725	24 Doo 19 June - 13 Deo	10 Jau - 14 July $88 \mathrm{Jan}-28 \mathrm{Dec}$	774 775	130 May - 23 Nov	4 May - 29 Oot
726 727 728	19 June - 13 Deo	${ }^{85 \mathrm{Jan} \text { - } 28 \mathrm{Dec}}$	775 776	19 May - 2000	4 alay - 29 Oot
728	27 May	$13 \mathrm{May} \mathrm{-} 6 \mathrm{Nov}$	777	$28 \mathrm{Mar}-21 \mathrm{Bep}$	12 Apr
729 730	$18 \Delta \mathrm{pr}-11$ Oot	27 Oot	778	$17 \mathrm{Mar}-11 \mathrm{Sep}$	28 Aug
730	$7 \Delta \mathrm{pr}-10 \mathrm{t}$	16 Oot	$\begin{array}{r} 779 \\ 780 \end{array}$	26 Jan - 21 July	21 Feb -16 Aag 10 Feb
791	$28 \mathrm{Mar}-20 \mathrm{Bep}$	12 Mar			
782 788	8 Fob - 81 July	1 Mar - $25 \Delta \mathrm{ag}$ 14 Ang	781	$15 \mathrm{Jan}-10$ July	29 Jan - 26 Jane 15 June
784	$24 \mathrm{Jan}-20 \mathrm{July}$	$\left\{\begin{array}{c}10 \mathrm{Jan} \\ 80 \mathrm{D} 00\end{array}\right.$	782 783	4 Jan - 29 June	29 Nov
785	13 Jan - 9 July	19 Doc	784	9 May - 2 Nov	17 Nov
786	25 Nov - July		785	$29 \mathrm{Apr}-22 \mathrm{Oot}$	$\begin{aligned} & 18 \mathrm{Apr} \\ & 4 \mathrm{Apr}-27 \mathrm{Sep}\end{aligned}$
737	18 May - 12 Nov	8 June	786 787	$8 \mathrm{Mar}-2 \mathrm{Bop}$	16 Bep
738 738	8 Msy - 1 Nov	18 Oot	788	28 Feb - 21 Aug	
740	18 Mar - 10 Sep	1 Apr	789 790	$\begin{aligned} & 14 \mathrm{Feb}-10 \mathrm{Ang} \\ & 26 \mathrm{Dea} \end{aligned}$	$\left\lvert\, \begin{aligned} & 31 \mathrm{Jan} \\ & 20 \mathrm{Jan} \end{aligned}\right.$
741	7 Mar - 31 Aug			20 June - 15 Deo	6 July
742	$24 \mathrm{Feb}-20 \mathrm{Aug}$	$\begin{array}{r} 8 \mathrm{Aug} \\ 30 \mathrm{Jan} \end{array}$	792	9 June - 3 Deo	24 Juue - 19 Nov
748		30 Jan	798	30 May	8 Nov
744	$\left\{\begin{array}{c}\text { Jan-29 June } \\ 24 \mathrm{Deo}\end{array}\right\}$	19 Jan	794	13 Oot	${ }^{4} \mathrm{M}$ May
745	18 June - 18 Doo	4 June	795 796	$\begin{array}{r} 9 \mathrm{Apr}-8 \text { Oot } \\ 28 \mathrm{Mar}-218 \mathrm{Bep} \end{array}$	${ }^{23} 8 \mathrm{Apr}$
748	8 Jane	25 May - 7 Nay	797	28 Mar - 21 Bop	3 Mar
$7+7$ 748	29 Apr 18 Apr - 11 Oot	$\begin{aligned} & 14 \text { May - } 7 \text { Nov } \\ & 27 \mathrm{OOt} \end{aligned}$	798	${ }_{8} 8 \mathrm{Feb}$ - $1{ }^{1} \mathrm{Aug}$	20 Feb - 7 July
749	$7 \mathrm{Apr}-80 \mathrm{Sop}$	23 Mar	799 800	$26 \mathrm{Jau}-21 \mathrm{July}$ $16 \mathrm{Jan}-10 \mathrm{July}$	26 June 7 Jnly
750					

TABLT XVIII.-(Continued.)
Lust of Eclupses

A. D	Lunar	Solar.	A D	Lunar.	Solar
801		15 Jane - 9 Deo	851	19 Apr	5 Apr
802	21 May - 13 Nov	29 Nov	852	9 Mar	$24 \mathrm{Mar}-17 \mathrm{Sep}$
803	10 May - 2 Nov	25 Apr	853	27 Feb - 22 Aag	13 Mar
804	22 Oot	13 Apr	854	16 Feb - 12 Ang	28 Jonly
$80 \overline{0}$	19 Mar - 12 Sep	${ }^{8}$ April - 28 Sep	855		17 July
806	${ }_{26} \mathrm{Mar}-1 \mathrm{Sep}$	16 Sop	856	22 Jane - 15 Deo	11 Jan - 31 Deo
8807	$26 \mathrm{Feb}-21$ Aug	${ }_{31}^{11 \mathrm{Feb}}$ - 27 July	857 858 88	11 June - 51 Dec	27 May
809	\{ $6 \mathrm{Jan}-1 \mathrm{Jaly}\}$	31 Jau - 27 July	859		6 May - 29 Ot
810	${ }_{20 \mathrm{Jan}}{ }^{25} \mathrm{Dec} \mathrm{Deo}^{\prime}$	6 Jnly - 30 Nov	860	9 Apr - 3 Oot	18 Oot
811	10 Jane		881	$30 \mathrm{Mar}-22 \mathrm{sep}$	15 Mar
812	23 Oct	14 May	862	19 Mar - 11 Sep	4 Mar - 29 Ang
818 814	$19 \mathrm{Apr}-13$ Oot	${ }_{1}{ }^{4} \mathrm{May}$	868	27 Jau-22 July	18 Aug 6 Aug
8814	$8{ }^{8} \mathrm{Apr}$ - 3 Oot	17 Sop	864 868	15 Jan - 12 July	${ }_{1}^{6}$ Jag - 21 Deo
816	28 Mar - 11 Fob Aur	78 cop 2 Mar	866	26 Nov	16 June
817	${ }^{17 \mathrm{Feb}} \mathbf{6}$ - 31 Jag	19 Fab	867	$22 \mathrm{May}-15 \mathrm{Nov}$	6 June
818	26 Jan - 21 July	7 July	868	10 May - 4 Nor	19 Oct
818	--	26 June	869 870	${ }_{21}^{29} \mathrm{Apr}$	9
820	81 May - 23 Nov	9 Deo	870		
821	20 May - 18 Nov	6 May	871	10 Mar - 2 Sep	24 Mar
822	9 May - 2 Nov	26 Apr	872	28 Feb - 22 Aug	8 Ang
823	24 Sep	8 Oct	873	12 Aug	1 Feb - 28 Jnly
824	18 Mar - 12 Sep	26 Sep	874	3 July - 26 Dee	21 Jan - 17 July
825 826	8 Mar - 1 Sep		875	22 Jane - $16 \mathrm{D}_{\text {eo }}$	11 Jan - 7 June
826 827	17 Jan - 12 July	$\begin{gathered} 7 \mathrm{Aug} \\ 27 \mathrm{July} \end{gathered}$	876 877	10 Jnde - 5 Dec	$\begin{aligned} & 27 \text { May } \\ & 9 \text { Nov } \end{aligned}$
828	$\left\{\begin{array}{c}6 \mathrm{Jan}-1 \mathrm{July} \\ 25 \mathrm{Dec}\end{array}\right\}$	15 July	878	$20 \mathrm{Apr}-15$ Oct	29 Oct
829	${ }_{20} \mathrm{Jume}^{25 \mathrm{Dec}}$	90 Nov	879 880	${ }_{30} 10 \mathrm{Apr}-4 \mathrm{Oct}$	26 Mar
830	4 Nov	${ }_{25} \mathrm{May}$	880	- Mar 22 Sep	14 Mar - Sop
881	$30 \mathrm{Apr}-24$ Oct	15 May	881	$10 \mathrm{Feb}-13 \mathrm{Aqg}$	28 Ang
882	$18 \mathrm{Apr}-13$ Oot	15	888	${ }^{7} 7 \mathrm{Feb}-{ }^{3} \mathrm{AOE}$	17 Aug
831 834	${ }_{27}^{8} \mathrm{Fpr}$	$25 \mathrm{Mar}-17 \mathrm{Sep}$ $14 \mathrm{Mar}-7 \mathrm{Sep}$	8884	16 Jan - 6 Dec	2 Jan - 26 Jnue
8888	${ }_{17} 7 \mathrm{Feb}$ - 12 Ang	${ }_{14 \text { Mar - }}^{\mathbf{3} \text { Mar }} 7$	885	1 June-26 Nov	16 June
886	8 Feb-31 July	17 July	886 887	${ }^{21} \mathrm{May}$ - 15 Nav	6 Jumo
837		$\left\{\begin{array}{c}10 \mathrm{Jan} \\ 31 \\ \text { Dec }\end{array}\right.$	887 888	11 May 31 Mar	$20 \mathrm{Act}-90 \mathrm{ct}$
838	11 June - 5 Die	31 Dec	889	21 Mar - 13 Sep	4 Apr
839	1 June - 24 Nov	16 May	890	10 Mar - 2 Sep	19 Aug
840	20 May - 13 Nov	5 May - 29 Oat			
841			891	23 Ang	12 Feb
842	$30 \mathrm{Mar}-23 \mathrm{Sep}$	$25 \mathrm{Apr}-18$		\{ 6 Jan-2 Jaly \}	2 Fbb
843	19 Mar - 12 Sep	5 Mar	893	$\left\{\begin{array}{c}26 \text { Deo }\end{array}\right\}$	17 June
844 845	27 Jan - 22 July	${ }^{22} \mathrm{Feb}$	894	22 June - 16 Deo	$7 \text { June }$
846	16 Jan - 12 July	27 July - 22 Deo	8898	1 May - $25 \mathrm{Oct}^{\prime \prime}$	28 May - 20 Nov
847	5 Jan - 2 Joly	11 Deo	887	$20 \mathrm{Apr}-140 \mathrm{ct}$	\checkmark Apr
848	14 Nov	${ }^{5}$ June	898	$10 \mathrm{Apr}-8$ Oot	26 Mar
849 880	$11 \mathrm{May}-4 \mathrm{Nov}$ $30 \mathrm{Apr}-24$ Oct	25 May 9 Oct	898 900	24 Aug	15 Mar

TABLE XVIII-(Continued)
Lust of Eclupses

A D	Lonar.	Solar	A D	Lumaz	Solar
901	8 Fiob - 3 Ang	29 Jan	951	23 May - 16 Nor	8 May
902	$26 \mathrm{Jan}-17$ Deo	12 Jan - 8 July	952	12 May - 4 Nov	26 Apr
003	12 June - 7 Deo	27 June	983		16 Apr
904	81 May - 23 Nop	16 June - 10 Nor	984	$22 \mathrm{Mar}-15 \mathrm{Sep}$	
905 908	21 May		985	11 Mar - 4 Sep	
908 907	$1 \mathrm{Apr}-24$	26 Apr	956 957	28 Feb	$14 \mathrm{Feb}-8 \mathrm{Aug}$
908	20 Mar - 24 Sop 20 Sep	18 Apr 29 Aug	958	18 Jau - 3 July	
909	2 Sep	18 Ang	958	$\{28 \mathrm{Deo}$	19 July - 13 Deo
910	24 Jnly	12 Feb	$\begin{aligned} & 959 \\ & 960 \end{aligned}$	23 June	$\begin{array}{r} 2 \mathrm{Deo} \\ 28 \text { May } \end{array}$
911	17 Jan - 14 July $\{7 \mathrm{Jan}-2 \mathrm{July}$	2 Feb			
912	$\left\{\begin{array}{c}7 \mathrm{Jnn}-2 \mathrm{Jnly} \\ 26 \mathrm{DeO}\end{array}\right\}$	17 June	961	$9 \mathrm{May}-26 \mathrm{Oct}$ $22 \mathrm{Apr}-16$ Oct	$\begin{array}{r} 17 \text { May } \\ 1 \text { Oot } \end{array}$
819		7 Junt	963	11 Apr - 5 Oot	20 Sop
914	12 May - 5 Nor	20 Nov	964		th Mar
915	2 May - 25 Oot	$17 \Delta \mathrm{pr}$	965	18 Feb - 15 A ag	8 Mar
916	$20 \mathrm{Apr}-130 \mathrm{ct}$	${ }^{5} \mathrm{Apt}$	966	8 Feb - 4 Aug	20 Juk
917		19 Sop	967	28 Jmb	10 July
918	$28 \mathrm{Feb}-24$ Oct	8 Sep	968	11 June - 7 Dee	22 Deo
918	17 Fob - 14 Aug	9 Feb	969	3 June - 26 Nov	19 May
920	$7 \mathrm{Feb}-28$ Dec	$24 \mathrm{Jan}-18 \mathrm{July}$	970	23 May - 15 Nov	8 May
921	23 June - 17 Dec	8 July	371		$27 \mathrm{Apr}-22$ Oct
922	12 June - 7 Deo	27 June - 21 Nov	972	$1{ }^{1}$ Apr - 25 Sep	10 Oct
923	1 June	11 Nov	973	21 Mar - 15 Sop	7 MaF
924		6 May	974	11 Mar - 4 Sep	$25 \mathrm{Feb}-2 . \mathrm{Alg}$
925	$11 \mathrm{Apr}-4$ Oot	28 Apr	975		10 Aug
926 927	$1 \mathrm{Apr}-24 \mathrm{Sep}$	10 Sep	976	19 Jan - 14 Jnly	29 July
927	14 Sep	${ }_{6} \mathrm{Mar}$ - 30 Ang	977	$\left\{\begin{array}{c}8 \mathrm{Jan}-\mathrm{T} \text { July }\end{array}\right\}$	13 Deo
928	4 Aug		977	$\{28$ Dec $\}$	
929	27 Jun - 24 July	12 Feb	978		8 June
930	17 Jan - 13 July	29 June	979 980	$\begin{array}{r} 14 \text { May - } 6 \text { Nov } \\ 3 \mathrm{May}-26 \text { Oot } \end{array}$	$\begin{aligned} & 28 \mathrm{May} \\ & 17 \mathrm{May} \end{aligned}$
931	7 Jan	18 June - 12 Deo			
932	22 May - 16 Nov	30 Nov	981	$22 \mathrm{Apr}-16$ Oct	30 Sep
933.	12 May - 5 Nov	27 Apr	992		28 Mar - 20 Bep
934	2 May - 25 Oct	$16 \mathrm{Apr}-11000$	983	$1 \mathrm{Mar}-26 \mathrm{Aug}$	17 Mar
935		8 Apr - 30 Sep	984	19 Feb - 14 Aug	90 July
936	11 Mar - 4 Sop	18 Sep	985	$8 \mathrm{Feb}-3$ Aug	20 July
937 938	28 Feb - 24 Aug	13 Feb	986	24 June - 19 Deo	1d Jan
938 939	17 Feb ${ }_{\text {dan }} \mathbf{4}$ July $\}$	3 Feb	987 988	2 June- 26 Nor	18 May
939	$\left\{\begin{array}{c}\text { Jau-4 July } \\ 29 \text { Deo }\end{array}\right\}$	19 July	989	2 Jun- 26 Nop	8 May - 1 Nor
940	22 Jnne - 17 Deo	8 Jaly	990	12 Apr - 7 Oct	2) Oct
941	12 Jnue	21 Nov	991	$1 \mathrm{Apr}-26 \mathrm{Sep}$	$18 \mathrm{Mar}-10$ Oat
942		17 May - 11 Nor	992	21 Mar - 14 Sep	7 Mar
913	$23 \mathrm{Apr}-16$ Oct	7 May	993		24 Fob - 20 Aug
944	$11 \mathrm{Apr}-4$ Oot	$25 \mathrm{Apr}-20 \mathrm{Sep}$	094	30 Jan - 25 July	9 Aug
945	24 Sep	18 Mar - 9 Sep	993	19 Jan - 14 July	4 Jan
946 947		6 Mar - 29 Ang	996 997	${ }_{8}^{8} \mathbf{8}$ Jan May - 17 Nov	
947 948	${ }_{28}^{8 \mathrm{Feb} \text { Jan - } 23}{ }^{4} \mathrm{Jug}$ Jug	9 July	997 998	$24 \mathrm{May}-17 \mathrm{Nov}$	${ }_{28}{ }^{7}$ Mnnay - 23 Oot
949	17 Jan	28 June - 22 Deo	999	3 May -27 Oot	12 Oot
950	3 June - 27 Nov	12 Dec	1000		$7 \mathrm{Apr}-\mathrm{B0} \mathrm{Sep}$

TABLIXVIII-(Continued.)

Lust of Eclipsea

AD	Lunam	Solar	A D	Lurar	Solaz.
1001	$12 \mathrm{Mar}-5 \mathrm{Sep}$		1051	26 June - 20 Deo	$15 \mathrm{Jan}-10 \mathrm{Jnly}$
1002	$1 \mathrm{Mar}-25 \mathrm{Ang}$	11 Ang	1052	15 Jude - 8 Dec	29 Jane - 24 Nov
1008	$18 \mathrm{Feb}-14 \mathrm{Aug}$	91 July	1053	4 June - 28 Nov	16 Nov
100	4 July - 29 Deo	24 Jen - 20 Jaly	1054		10 May
1005	24 June - 16 Deo	13 Jan	1058	$14 \mathrm{Apr}-8$ Oct	${ }^{29}$ Apr
1006	7 Deo	29 May	1056	$2 \mathrm{Apr}-26 \mathrm{Sep}$	12 Sep
1007 1006	$29 \mathrm{Apr}-17$ Oct	19 May	${ }_{1057}^{1058}$	$23 \mathrm{Mar}-15 \mathrm{Sep}$	$25 \mathrm{Feb}-22 \mathrm{Ang}$
1009	$12 \mathrm{Apr}-6$ Oct	29 Mar	1059	$81 \mathrm{Jan}-27 \mathrm{~J} \mathbf{1} \mathrm{y}$	15 Feb
1010	$1 \mathrm{Apr}-26 \mathrm{Bep}$	18 Mar	1060	20 Jan - 16 Jnly	S0 June
1011		7 Mar - 81 Ang	1061	8 Jam	20 June
1012	$10 \mathrm{Fob}-4 \mathrm{Aug}$	20 Aug	1062	25 May - 19 Nov	
1013	29 Jen - 25 Jniy	14 Jan	1063	15 May - 8 Nov	1 May
1014	19 Jan - 14 July	4 Jan - 80 Jnae	1084	3 May - 28 Oct	19 Apr
1015	5 June - 28 Nov	19 Jnne	1085		8 Apr
1018	2t May - 17 Nov	7 June - 2 Nor	1086	14 Mar - 6 Sep	22 Sep
1017	$13 \mathrm{May}-6 \mathrm{Nov}$	22 Oct	1067	3 Mar - 27 Aag	16 Fab
1018		18 Apr	1088	21 Fab - 15 Aug	6 Feb
1019	$23 \mathrm{Mar}-16 \mathrm{Sep}$	21 Aug	1060	7 Jaly - 90 Doo	21 July
1020	12 Max - 4 Sep		1070	28 June- 20 Deo	10 July - 8 Doo
1021	1 Mar - 25 Ang	11 Aug	1071	15 June - 9 Deo	24 Nov
1022	18 Jnly	81 Jnly	1072		20 May
1023	$\left\{\begin{array}{c}\theta \mathrm{Jau}-\mathrm{D}_{\text {co }} \mathrm{July} \\ 29 \mathrm{D}\end{array}\right\}$	24 Jun	1073 1074	24 $14 \mathrm{Apr}-18$ 14 Act 7	${ }^{9} \mathrm{May}$
1024	24 June - 18 Dec	9 Jupe	1074 1075		28 Apz 13 Bep
1025		$29 \mathrm{May}-29 \mathrm{Nor}$	1076		18 Sop
1026	4 May - 28 Oct	12 Nor	1077	$10 \mathrm{Fab}-6 \mathrm{Ang}$	25 Feb
1027	$23 \mathrm{Apr}-18$ Oot	$9 \mathrm{Apr}-1$ Nov	1078	80 Jan - 27 July	11 July
1026	$12 \mathrm{Apr}-6$ Oot	28 Maz	1078	20 Jan	1 July - 26 Deo
1029	20 Feb- 16	11 Sep	1080	5 June - 29 Nov	20 Jone - 14 Deo
			1081	25 May - 19 Nor	8 Deo
1091	$10 \mathrm{Feb}-5 \mathrm{Aug}$		1082	14 May - 8 Nov	80 Apr
1082	90 Jan - 25 July	15 Jan - 10 July	1063		14000
1083	15 June - 6 Deo	4 Jan - 29 Jana	1064	$24 \mathrm{Mar}-16$ Sop	2 Oot
1034	4 Jone - 26 Nov	18 June	1085	$14 \mathrm{Mar}-6 \mathrm{Sep}$	
1048 1038 108	24 May - 18 Nov		1088	$3 \mathrm{Mar}-2740 \mathrm{y}$	16 Fob
1037	2 Apr - 27 Sep	16 Apr		\{11 Jan-6 July $\}$	20 Julg
1068	$23 \mathrm{Mar}-16 \mathrm{Sep}$	$1 \text { Sep }$	1088	$\{90$ Deo $\}$	20 July
1089 1040	13 Mar - 6 Sep	22 Aug 15 Feb	$\begin{aligned} & 1089 \\ & 1090 \end{aligned}$	25 June - 20 Dec	24 Nov
1041	20 Jan - 16 July	-	1091	5 May - 30 Oot	21 May
1042	19 Jan - 5 July	20 June	1092	$21 \mathrm{Apr}-16$ Oct	9 May
1042	[28 Deo \}	20 June	1093	14Apr - 7 Oot	23 Sep
1043	14 May - 8 Nov	$\begin{aligned} & \theta \text { Jnne }-4 \text { Deo } \\ & 22 \text { Nov } \end{aligned}$	1094 1095	$22 \mathrm{Feb}-18 \mathrm{Ang}$	19 Mar
1045	6 May - 28 Oot	$19 \mathrm{Apr}-11$ Nor	1096	11 Feb-6 Aug	22 Joly
1046	$26 \mathrm{Apr}-17$ Oot	${ }^{9} \mathrm{Apr}$	1097	30 Jan - 27 July	
1047 1048 10		$\begin{aligned} & 29 \mathrm{Mar}-22 \mathrm{Sep} \\ & 10 \mathrm{Sep} \end{aligned}$	1098	11 Deo	$\left\{\begin{array}{c} 5 \mathrm{Jan}_{25}-1 \mathrm{July} \\ 25 \mathrm{Deo} \end{array}\right.$
1040 1060	$\begin{array}{r} 20 \mathrm{Feb}-15 \Delta u g \\ 9 \mathrm{Feb}-84 u g \end{array}$	${ }_{8} 8 \mathrm{Fob}$	$\left\lvert\, \begin{aligned} & 1009 \\ & 1100 \end{aligned}\right.$	$\left\{\left.\begin{array}{c} 5 \mathrm{Juno}-80 \mathrm{Nov} \\ 28 \mathrm{Maj}-18 \mathrm{Nor} \end{array} \right\rvert\,\right.$	11 Maj

FABLEXVIII.-(Continued.)
Lust of Eclupses

A.D	Lunas	Solar	A D	Lunar	Solar
11101		$30 \mathrm{Apr}-240 \mathrm{ct}$	11151	$4 \mathrm{Mar}-28 \mathrm{Aug}$	19 Aug $7 \mathrm{Feb}-2 \mathrm{Aug}$
1108	$8 \mathrm{Apr}-28 \mathrm{Sep}$ $25 \mathrm{Mar}-17 \mathrm{Sep}$	10 Mar	1153	12 Jan - 7 July	$26 \mathrm{Ja口}$
1104	13 Mar - 6 Sep		1154	$\left\{\begin{array}{c}1 \mathrm{Jan}-27 \mathrm{June}\end{array}\right\}$	12 June
1105	Jul	16 Feb	11	${ }_{16 \text { June }}^{\text {21 Dec }}$	$1 \mathrm{June}-26 \mathrm{Nov}$
	111 Jan-6July		1156	7 May - 30 Oct	21 May
1107	\{ 31 Deo	16 Dec	1167	$26 \mathrm{Apr}-19$ Oct	11 Apr - 4 Nor
1108	25 Juae	11 June	1188	$15 \mathrm{Apr}-9$ Oot	
1109	$16 \mathrm{Mer}-9 \mathrm{Nov}$	${ }^{1} 1 \mathrm{Mny}$	1159		¢1 Mar
1110	8 May - 29 Oct	20 May - 15 Oot	1160	18 Feb - 18 Ang	2 Bep
1111	$15 \mathrm{Apr}-1800 \mathrm{t}$		1161	12 Feb - 7 Ang	28 Jan
1112		$29 \mathrm{Mar}-22 \mathrm{Sep}$	1162	1 Feb - 27 July	17 Jan
1114	$4 \mathrm{Mar}-28 \mathrm{Aug}$	19 Mar	1163	18 June- 12 Deo	6 Jan - 3 Jury
1114	$21 \mathrm{Feb}-18 \mathrm{Aag}$	2 Aug	1164	6 Juae- 90 Nor	21 June - 16 Nov
1115	10 Feb - 7 Aug	23 July	1165	$27 \mathrm{May}-19 \mathrm{Nov}$	
1116	21 Dec		1166		$\begin{aligned} & 1 \mathrm{May} \\ & 21 \mathrm{Apr} \end{aligned}$
11117	$\begin{array}{r} 16 \text { Juae - } 11 \mathrm{Deo} \\ 8 \text { June - } 80 \mathrm{Nev} \end{array}$		1167 1168	$6 \mathrm{Apr}-\mathrm{go} \mathrm{Sep}$ $25 \mathrm{Mar}-19 \mathrm{Sep}$	${ }^{21} \mathrm{Apr}-8 \mathrm{Sep}$
111		${ }^{11} \mathrm{May}$	1169	$14 \mathrm{Mar}-8 \mathrm{Sep}$	24 Aug
1120	$15 \mathrm{Apr}-8$ Oct	24 Oct	1170		
1121	Apr -28 Sep	20 Mar - 13 Oct	117	$23 \mathrm{Jan}-18 \mathrm{July}$	
1122	$24 \mathrm{Mar}-17 \mathrm{Sep}$	10 Mar	1172	13 Jan - 27 Juge	27 Jau - 23 June
1129 1124		22 Aug	1174	18 May - 270 Juae	12 June - 26 Nor
1124 1125	${ }^{1} \mathrm{Feb}-28 \mathrm{July}$	${ }^{11} 6{ }^{\text {Jang }}$ - 26 Dec	1175	7 May - 81 Oot	15 Nov
1126	11 Jan - 6 July	22 Juae	1176	$25 \Delta \mathrm{pr}-19$ 0ct	11 Apr
112	27 May - 20 Nov	11 June	1177		29 Sep
1128	16 May - 8 Nov	$30 \mathrm{May} \mathrm{-} 2500 \mathrm{t}$	1178	5 Mar - 30 Ang	14 Spp 8
1128	8 May - 29 Oot	150 ct	1179	$28 \mathrm{Feb}-19 \mathrm{Aug}$	$8 \mathrm{Feb}-8 \mathrm{Sop}$
1180		4 Oot	1180	13 Feb - 7 Aug	28 Jen
1181	18 Mar - 8 Sep	80 Mar	1181	22 Dec	17 Jau - 13 July
1182	9 Mar - 28 Arg	19 Mar	1189	18 June - 11 Deo	2 July
1183	21 Feb - 17 Aug	2 Aug	1183	7 June - 1 Deo	17 Nov
1184		27 Jan - 28 Jaly	1184		
1188	$\left\{\begin{array}{c}1 J_{2 \pi}-27 \text { June } \\ 22 \text { Deo }\end{array}\right\}$	16 Jan	1185		1 May 21 Apr
1136	15 June - 10 Dec	5 Jea - 1 June	1187	26 Mar - 19 Sep	4 Sep
1187	8 June 20 Oot	$21 \text { May - } 16 \text { Nov }$	1188		29 Feb- 24 Arg 17 Feb
1138	26 Apr 16 Apr 20 9	4 Nor	1189 1180	9 Feb- 29 July $23 \mathrm{Jan}-18 \mathrm{July}$	${ }^{17} 6 \mathrm{Feb}$ - 4 July
1139	$\begin{array}{r} 16 \mathrm{Apr}-9 \text { Oct } \\ 4 \mathrm{Apr}-28 \text { Sep } \end{array}$	20 Mar	1180	23 Jan - 18 July	6 Feb - 2 Jaly
1141		10 Mar - 2 Eep	1191	$12 \mathrm{Jau}-8 \mathrm{July}$ $28 \mathrm{May}-21 \mathrm{Nov}$	$\begin{aligned} & 29 \text { Juae - } 18 \text { Deo } \\ & 11 \text { June - } 6 \text { Deo } \end{aligned}$
1142	12 Feb-8Aug		1193	18 May - 10 Nov	
1149	$1 \mathrm{Feb}-28 \mathrm{July}$	12 Aug	1194	7 May - 31 Oct	$22 \mathrm{Apr}$
1144	2 an - 16 July	6 Jan - 26 Dec	1198		$12 \mathrm{Apr}-8$ Oct
1145	${ }^{6} \mathrm{Jan}$ - 1 Deo	22 Juae 11 Juae - 6 Nov	1195	$16 \mathrm{Mar}-9 \mathrm{Sep}$	
1146	27 May - 20 Noy $17 \mathrm{May}-9 \mathrm{Nor}$	11 June - 6 Oct Nov	1197 1198	$8 \mathrm{Mar}-29 \mathrm{Aug}$ $23 \mathrm{Feb}-18 \mathrm{Aug}$	18 Sep
1148		$20 \mathrm{Apr}-14$ Oot	1199		28 Jan - 24 July
1149 1150	$28 \mathrm{Mar}-19 \mathrm{Sep}$ $16 \mathrm{Mar}-8 \mathrm{sep}$	9 Apr 24 Aug	1200	$\left\{\begin{array}{c}3 \text { Jan-28June } \\ 22 \text { Deo }\end{array}\right\}$	12 Jaly - 8 Deo

TABLIXVIII.-(Continued.)
List of Eclupses

A D	Lunam	Solar.	AD	Lunae	Soung.
1201	18 June - 11 Deo	27 Nov	1251	$7 \mathrm{Apr}-10 \mathrm{ot}$	16 Oct
1202		23 May	1252	27 Mar - 10 Sept	11 Mar
1208	27 Apr - 22 Oct	12 May	1253		$1 \mathrm{Mar}-25 \mathrm{Ang}$
1204	16 Apr - 10 Oct	1 May	1254	$4 \mathrm{Feb}-31 \mathrm{July}$	14 Aug
1205	5 Apr - 29 Sep		1255	24 Jan - 20 July	10 Jan - 20 Deo
1206		11 Mar - 4 Sep	1286	13 Jan - 9 July	16 Deo
1207	$14 \mathrm{Feb}-9 \mathrm{Aug}$	28 Fab	1257	23 Nov	18 June
1208	3 Feb - 29 July	14 July	1258	18 May - 12 Nov	3 June
1209	$22 \mathrm{Jan}-18$ July	3 July - 28 Dec	1259	8 May -1 1 Nor	
1210	9 June - 2 Dec	17 Deo	1260		$12 \mathrm{Apr}-6$ Oct
1211	29 May - 22 Nov		1261	18 Mar - 10 Bep	1 Apr
1212	17 May - 10 Nov	2 Maj	1262	${ }_{2} \mathrm{Mar}^{-31} \mathrm{Ang}$	
1213	$27 \mathrm{Mar}-20 \mathrm{Sep}$	${ }^{22} \mathrm{Apr}$	1263	24 Fob - 20 Aug	$\begin{array}{r} 5 \mathrm{Aug} \\ 90 \mathrm{Jan} \end{array}$
1215	$17 \mathrm{Mar}-9 \mathrm{Sop}$	2 Mar		\{3 Jan-30June $\}$	
1216	5 Mar - 28 Aug	19 Feb	126	$\{24 \mathrm{Dec}$	19 Jan
1217		7 Fob - 4 Aug	1266	19 June - 13 Dea	8 Jan - 4 June
1218	18 Jan - 9 July	24 July - 19 Deo	1267	8 Jnne	25 May
1218.	$\left\{\begin{array}{c}2 \mathrm{Jan}-29 \text { June } \\ 22 \mathrm{Dec}\end{array}\right\}$		$\begin{aligned} & 1268 \\ & 1269 \end{aligned}$	$\begin{aligned} & 28 \mathrm{Apr}-22 \text { Oct } \\ & 18 \mathrm{Apr}-11 \text { Oot } \end{aligned}$	13 May - 6 Nor
1220		2 June	1270	$7 \mathrm{Apr}-30 \mathrm{Sep}$	23 Mar
1221	8 May - 1 Nor	23 May	1271		$12 \mathrm{Mer}-6 \mathrm{Sep}$
1222	$27 \mathrm{Apr}-22 \mathrm{Oct}$	12 May - 600 t	1272	15 Fob - 10 Ang	25 Aug
1223	$16 \mathrm{Apr}-11$ Oct	26 Bep	1273	8 Feb - 31 July	$20 \mathrm{Jan}-14 \mathrm{Ang}$
1224	24 Feb - 19 Aug	21 Mur	1274	$\left\lvert\, \begin{aligned} & 23 \text { Jan - } 20 \text { July } \\ & 4 \mathrm{Dec}\end{aligned}\right.$	25 June
1228	14 Feb - 9 Aug	28 Feb-25 July	1276	29 May - 23 Nov	19 June
1227	$3 \mathrm{Feb}-30 \mathrm{July}$	15 July	1277	18 May - 12 Nor	28 Oct
1228	12 Deo	3 July - 28 Deo	1278	8 May	23 Apr
1229	8 June - 2 Deo		1279	$29 \mathrm{Max}-21 \mathrm{Sep}$	12 Apr
1230	28 May - 22 Nov	14 May	1280	$18 \mathrm{Mar}-10 \mathrm{Sep}$	1 Apr
1281		3 May - 26 Oct	1281	7 Mar - 31 Aug	15 Aug ह Aug
1238	$\begin{array}{r} 6 \mathrm{Apr}-1 \text { Oot } \\ 27 \mathrm{Mar}-20 \text { Sep } \end{array}$	$\begin{array}{r} 15 \text { Oct } \\ 5 \text { Oot } \end{array}$	1283	14 Jan - 11 July	$30 \mathrm{Jan}$
1284	17 Mar - 9 Sep	1 Mar	1284	$\left\{\begin{array}{c}4 \text { Jan-29 June } \\ 24 \text { Deo }\end{array}\right\}$	19 Jan - 15 June
1285		$19 \mathrm{Feb}-15 \mathrm{Ang}$	1285	18 June	
1288	24 Jan - 20 July	8 Ang	1286	9 May - 2 Nov	$17 \mathrm{Nov}$
1237	12 Jan - 92 July	19 Dte 8 Deo	1287	$29 \Delta \mathrm{pr}-22$ Oot	7 Nov
12388	12 Nav - 29 J une	8 Deo	1288	18 Apr - 11 Oot	2 Apr
1240	7 May - 1 Nov	23 May	$\left.\begin{aligned} & 1269 \\ & 1290 \end{aligned} \right\rvert\,$	$25 \mathrm{Feb}-22 \Delta u g$	$\begin{aligned} & 23 \text { Mar - } 18 \text { Sep } \\ & \text { \$ Sep } \end{aligned}$
1241	$27 \mathrm{Apr}-21$ Oct	6 Oot	1291	14 Feb - 11 Aug	25 Ang
1242 1243		20 Sep	1292	${ }_{15} 4$ Feb- ${ }^{\text {Deo }} 30 \mathrm{July}$	$21 \mathrm{Jan}-5 \mathrm{Jaly}$
1244		$10 \mathrm{Mar}-8 \mathrm{Alg}$	1294	${ }_{9} 9$ June - 4 Deo	25 June
1245	$13 \mathrm{Feb}-8 \mathrm{Aug}$	25 July	1295	30 May - 23 Nov	8 Nor
1246	24 Dec	19 Jan - 14 July	1296	18 May	28 Oct
1247	19 June - 13 Dec	8 Jan	1297	${ }_{9} \mathrm{Apr}-2$ Oot	23 Apr
1248	7 June - 2 Dec	24 May	1298	$29 \mathrm{Mar}-21 \mathrm{Sep}$	12 Apr
1249	28 May $18 \mathrm{Apr}-12$ Oot	14 May - 6 Noy	1299	18 Mar - 11 Sep	$\begin{aligned} & 27 \mathrm{Ang} \\ & 21 \mathrm{Frob}-15 \mathrm{Avg} \end{aligned}$

TABLEXVIII.-(Continued)
List of Eclupses

A. ${ }^{\text {D }}$	Lunar	Solar	A D	Lunar	Solar
1301	25 Jan - 21 July	${ }^{9} \mathrm{Fcb}$	1351	$\begin{aligned} & 4 \mathrm{Nov} \\ & 10 \mathrm{Apr}-23 \text { Oct } \end{aligned}$	14 May
1302	14 Jan - 10 July 2	2 t June - Dra	1352	10 Apr - 23 Apct	28 sep
1303	4 Jan - ¢9 June	15 June - 9 Dre	13,3 13.04	19 Apr - 13 Oct	25 Mar - 17 Sep
1304 1305	20 May - 13 Nov 98 May - 22	${ }_{17}{ }^{4}$ June - 28 Nov	1353	27 Fcb-23 Ang	14 Mar - 6 Sep
1305	9 May - 2 Nov	17 Aov $13 \mathrm{~A} \mu \mathrm{r}$	1366	$16 \mathrm{Feb}-11 \mathrm{Aug}$	28 July
1306 1307	29 Apr - 22 Oct	$1 / \mathrm{Apr}$ i Apr	1457	5 Feb- 11 July	
1308	8 Mar - 1 Sep	10 Scp	1358	16 Deo	$\left\{\begin{array}{c}31 \text { Deo }\end{array}\right\}$
1309	${ }^{25} \mathrm{~F} \in \mathrm{~b}-21 \mathrm{Aug}$	11 Feb	1350	11 Jume - 5 Dec	
1310	14 Feb - 11 Aug	31.	1,560	31 May - 23 Nov	15 May
1311	26 Dec	${ }_{5}^{20} \text { Jan - } 16 \text { July }$	1361	$20 \mathrm{May}$	5 Mry
$1 \begin{aligned} & 1312 \\ & 1313\end{aligned}$	$\begin{array}{r} 19 \text { June - } 14 \mathrm{Dec} \\ 9 \text { June - } 3 \mathrm{Dec} \end{array}$	6) July	13621	$40 \mathrm{ct}$	18 Oct
131313	$\begin{aligned} & \text { 9.June } \\ & \text { 30 May } \end{aligned}$	15 May - 6 Nov	1364	$30 \mathrm{Mar}-23 \mathrm{Sep}$ $18 \mathrm{Mar}-12 \mathrm{Scp}$	4 Nar
1315	20 Apr - 13 Oct	${ }^{4} \mathrm{May}$	1364	18 Mar -	21 Feb
1316	$8 \mathrm{Apr}-2$ Oct	${ }^{23} \mathrm{Apr}$	1362 1360	27 Jan - 22 July	7 Aug
1317	28 Mar - 21 Sep	6 Sep 3 Mar	1367	16 Jan - $12 . \mathrm{July}$	27 July - 22 Deo
1318	5 Feb - 1 Aug	21 Feb	1368	5 Jan - 1 July	10 Dec
1920	$26 \mathrm{Jan}-20 \mathrm{July}$	$10 \mathrm{Feb}-6 \mathrm{July}$	$\begin{aligned} & 1369 \\ & 1370 \end{aligned}$	14 Nov 11 Jay - 4 Nov	${ }^{5} 5 \mathrm{May}$
1321	14 Jan - 10 July	$20 \text { June }$	1371	$30 \mathrm{Apr}-24$ Oct	9 Oct
1322	21 Nov - 13 Nov	${ }_{29} 9 \mathrm{Nor}$ - ${ }^{\text {dec }}$	1772		+ Apr -27 Sep $2+\mathrm{Mar}-17 \mathrm{Sep}$
1323 132	9 May -- 1 Nov	24 Apr	1373	${ }_{27} 9 \mathrm{Mar}-2 \mathrm{Sep}$	1+ Mar - 8 Aug
1325		$13 \mathrm{Apr}-700 \mathrm{t}$	1374 1375	$16 \mathrm{Feb}-12 \mathrm{Aug}$	29 July
1326	$19 \mathrm{Mar}-12 \mathrm{Sep}$	26 Sep	1736	26 Dec	17 July
1327	${ }_{25}^{8 \mathrm{Mar}-{ }^{2} \mathrm{~S}^{\text {S }} \mathrm{p}}$	16 Sep	1777	22 June - 15 Dec	10 Jan - 31 Dec
1328	$25 \mathrm{Feb}-21 \mathrm{Aug}$	27 July	1378	11 June - \& Dec	27 Any
1329		16 July	1779	31 Mlay - 24 Nov	16 May 5 May
1330	$\left\{\begin{array}{c}\text { 26 Dec }\end{array}\right\}$	16 July	136	1406	
	20 June - 15 Dec	30 Nov	1381	9 Apr - 4 Oct	18 Oct
13,132	9 Juve -	25 Mny	1382	2! Mur - 23 Sup	29 Ang
1383	$30 \mathrm{Apr}-230 \mathrm{ct}$	14 May	11384	$7 \mathrm{Fcb}-2 \mathrm{Aug}$	17 Aug
1714	$19 \mathrm{Apr}-13$ Oct	4 May	1385	27 Jnn - $22 . J u l y$	${ }^{6}$ Aug ${ }^{\text {Jan }}-22 \mathrm{De}$
1330 1330	$8 \mathrm{Apr}-30$	${ }^{6} 5 \mathrm{~S}$ \%	1386	16 Jau-12 July	${ }_{16}^{10 \text { Junce }}$
1337	15 Feb--12 Aug	3 Mar	1387 1388	27 Nov - 14 Nov	5 June
1338	$5 \mathrm{Feb}-1{ }^{1} \mathrm{Aug}$	$20 \mathrm{Feb}-18$ July	1389	16 May - 4 Nov	
1339 1340	26 Jnn - 21 July	$7{ }^{\text {July - }}$	1390	29 Apl	9 Oct
	31 May - 23 Nov	9 Deo	1391	20 Mar - 2 Sept	${ }_{24}^{6} \mathrm{Mpr}$
1341	21 May - 13 Nor	${ }_{5} 5 \mathrm{May}$ - 19 Oct	1392 1993	${ }_{27}^{6}$ Mar-22 Aug	${ }_{8} 8$ Aug
1343		$\begin{aligned} & 25 \text { Apr }-19 \text { Oct } \\ & 7 \text { Oct } \end{aligned}$	1394	-	28 July
1844 1345	$29 \mathrm{Mar}-23 \mathrm{Sep}$ $18 \mathrm{Mar}-12 \mathrm{Sep}$	26 Sep	1395	$\left\{\begin{array}{c}6 \text { Jan - } 3 \text { July } \\ 26 \mathrm{Dc}\end{array}\right\}$	- -
1346	8 Mar - 1 Sep	$22 \mathrm{Feb}-7 \mathrm{Au}$	1396	21 June - 15 Dec	11 Jnn - 6 Junc
1347		${ }_{26}^{11 \text { Jeb - }}$ - Aug	1397	11 June - 4 Dec	$20.12 y$
1348	17 Jan-11 July	26 July	1393	26, Oot	16 May - 9 Nov
1349	, $\left\{\begin{array}{c}5 \mathrm{Jan}-1 \text { July } \\ 2 \overline{\text { aneo }}\end{array}\right\}$	10 Dec 30 Nov	1399	20 Apr - 15 Oct O Oct	29 Oct 26 Mar
1350	20 June	30 Nov		9 Apr - 3 Ot	

TABLEXVIII-(Continued)
Last of Eclipses

A D	Lunab	Solar	A B	Lemat	SOLAE.
1401	30 Mar	15 Mar - 8 Sep	1451	17 Jan - 13 July	28 June
1402	13 Aug	4 Mar	1452	$7 \mathrm{Jan}-27 \mathrm{Nov}$	17 June - 11 Dec
1403	7 Fob- 2 Aug	18 Aug	1453	2) May - 16 Nov	80 Nov
1404	27 Jan - $22 . \mathrm{July}$		1454	12 May - 5 Nov	27 Apr
1405	5 Dee	1 Jais - 26 June	1450	1 May - 2000 t	$17 \mathrm{Apr}-1100{ }^{\text {a }}$
1406	2 June - 25 Nov	lb June	1456	32 Mar	$\bigcirc \mathrm{Apr}$
1407	22 May - 15 Nov	11 Oct	1457	11 Mar - 3 Sop	18 Sep
1408 1409	10 M ny	3 Apr - 19 Oct 15 Apr- 90 ct	1488 1469	8 Feb- 24 Aug	3 Feb - 29 July
1410	21 Mar - 13 Sep	+ Apr	1460	$\left\{\begin{array}{c} 8 \mathrm{Jan}-3 \text { July } \\ 28 \mathrm{Dec} \end{array}\right\}$	18 July
1411	10 Mar - 2 Sep	19 Ang			
1412	22 Aug	$12 \mathrm{Feb}-7 \mathrm{Aug}$	1461	22 June - 17 Dec	7 July - 2 Dec
1413	17 Jan - 13 July	1 Feb	1462	12 June	${ }^{21} \mathrm{Nov}$ May - 11 Nor
1414	$\left\{\begin{array}{c}6 \text { Juu -3 July } \\ 20 \text { Dec }\end{array}\right\}$	17 June	$\begin{aligned} & 1+63 \\ & 1 \nmid 64 \end{aligned}$	22 Apr - 10 Oct	$\begin{aligned} & 18 \text { May - } 11 \text { Nov } \\ & \text { 6 May - } \end{aligned}$
1415	22June - 16 Deo	7 June	1465	$11 \mathrm{Apr}-4$ Oct	20 Sep
1416	5 Nov	27 May - 19 Nov	14 (1)	44 sep	16 Mar
1417	1 May - 2^{2} Oct		1167	1) Aug	6 Mar
1418	${ }^{20}$ Apr - 14 Oct	f_{6} Apr	1468	$8 \mathrm{Feb}-4 \mathrm{Aug}$	
1419	10 Apr	36 Mar	1469	$27 \mathrm{Jon}-24 \mathrm{July}$	9 July
1420	29 Feb - 23 Aag	14 Mar - 8 Sep	1470	17 Jan - 8 D ¢ 0	28 June - 22 Deo
1421	$17 \mathrm{Teb}-13 \mathrm{Ang}$	28 Aug	1471	3 June - 27 Nov	
1422	${ }_{1} \mathrm{Feb}-2 \mathrm{Aug}$	23 Jan	1472	22 May - 15 Nor	8 May
1423	17 Deo	8 July	1473	$12 \mathrm{Muy} \mathrm{-} 4 \mathrm{Nov}$	27 Afr
1424	12 June - 6 Doo	26, June	1474		16 Apr - 11 Oot
1425	1 Jnne - 2 Nor	10 Yov	1475	$22 \mathrm{Mar}-15 \mathrm{Sep}$	30 Bep
1426	21 May	7 May	1476	10 Mar - 3 Sep	20 Feb
1427	11 Apr	20 Oct	1777		8 Aug
1428	$31 \mathrm{Mar}-23$ Sep	14 Apr	$14^{\prime \prime}$	18 Jau - 15 July	$2{ }^{\text {J July }}$
1429 1430	$20 \mathrm{Mar}-13 \mathrm{Nep}$	30 Ang 19 Ang	1479	$\left\{\begin{array}{c}8 \mathrm{Jan}-4 \mathrm{July} \\ 29 \mathrm{Da}\end{array}\right\}$	19 July -13 Deo
			1880	22 June	
1431	24 Juy	12 Fets - 8 Aug			
1432		2 5eb-27 Juve			
1133	$\left\{\begin{array}{c}6 \mathrm{Jan} \text {-2 July } \\ 26 \mathrm{Dce}\end{array}\right\}$	17 J Ine	$\begin{aligned} & 148 \\ & 1433 \end{aligned}$	$\begin{array}{r} 3 \mathrm{Muy}-26 \mathrm{Oct} \\ 22 \mathrm{Apr}-16 \mathrm{Oct} \end{array}$	17 May 2 Oct
	is Nuv	- June - 30 Nov	1484	${ }_{4}^{24}$ Oct	20 bep
14	1- May - C ${ }^{\text {a }}$ v	20 Vor	$148{ }^{\circ}$	12 Aug	16 Mar - 9 Scp
$1+36$	$30 \mathrm{~A}_{1} \mathrm{~s}$ - $\mathrm{F}_{\text {Oct }}$	If Apr	1466	16 Гub - 15 Ang	¢ Mar
1137	-1) Apr - 14 Otr	[5pr - ${ }^{17}$ Sep	1497	8 Feb - 4 Aug	20 July
$1+761+5$		1.J Sup	1488	28 Jan	9 July 23 dee
1439 1440	$1 \mathrm{Mar}-24 \mathrm{Ang}$ $18 \mathrm{keb}-14 \mathrm{Aug}$	S 316	1443 1430	13 Iune - 9 Dec 2 June - 27 Nov	1 Jan - 22 Dee
1441	27 Dca	23 Jan - 18 July	1491	25 May - 16 Nor	8 May
1442	23 Jum - 17 Dec	7 July	1492		26 Apr - 21 Oct
1443	12 June - 7 Dec	-7 June	1493	$2 \mathrm{Apr}-25 \mathrm{Sep}$	10 Oct
1444	31 May	${ }^{10}$ Nov	1494.	$22 \mathrm{Mar}-15 \mathrm{Sep}$ $11 \mathrm{Mar}-4 \mathrm{Sep}$	${ }^{7}{ }^{7} \mathrm{Mar}$ Feb - 20 Aug
14.46	$11 \mathrm{~A}_{1} \mathrm{r}$ - 5 Oct	36 Apr	1495	11 Mar - 40 S Sap	$25 \mathrm{Feb}-20 \mathrm{Aug}$ $14 \mathrm{Feb}-8 \mathrm{Aug}$
1447		10 ¢p	1497	18 Jan - 14 July	29 July
1448	12 bep	5 Mar - 29 Aug	1498	8 Jan - 3 July	13 Dec
1449	4 Aug	18 Aug	1499		8 June
1450	28 Jan - 24 July	12 Feb	1500	13 May - 6 Nov	28 May

TABLE XVIII.-(Continued)

Lust of Eclupses

- From thas year all the dates are given in the Gregorian Calendar, or New Style.

LIST UF ECLIPSES

TABLEXVIII-(Continued)
Lest of Er lepses

A D	Lunar	Solat	A 1	Lunar	Solar
1601	15 Jnne - 9 Dec	$\left\{\begin{array}{c}4 \text { Jan-30 Jane } \\ 24 \text { Deo }\end{array}\right\}$	1651 1652	$25 \mathrm{Max}-17 \mathrm{Sep}$	8 Apr
1602	4 June - 29 Nov	21 May	1653	14 Mar - 7 Sep	29 Mar
1608	$24 \mathrm{May}-18$ Nov	11 May	1654	$3 \mathrm{Mar}-27 \mathrm{Aug}$	12 Aug
1604		29 Apr	1655		$6 \mathrm{Feb}-2 \mathrm{Ang}$
1605 1606	${ }^{3} \mathrm{Apr}-27 \mathrm{Sop}$	12 Oct	1656	$\left(\begin{array}{c}11 \text { Jan } \\ 81 \text { Dec } \\ \text { July }\end{array}\right\}$	26 Jan
1606	14 Mar - 16 Sar 6 Sep	26 Feb	1667	$25 \mathrm{June}-20 \mathrm{Dec}$	11 Jnne
1608	27 July	10 Aug	1658		1 June - 24 Nov
1609	20 Jan - 16 Jnly	30 July - 26 Dec	1659	6 May - 30 Oct	14 Nov
1610	$\left\{\begin{array}{c} 9 \mathrm{Jan}-6 \mathrm{July} \\ 30 \mathrm{Dec} \end{array}\right\}$	15 Deo	1660	$25 \mathrm{Apr}-18$ Oct	3 Nov
1611			1661	$4 \mathrm{Apr}-80 \mathrm{ot}$	30 Mar
1612	14 May - 8 Nov	${ }^{40} \mathrm{Muy}$	1662 1667 162		20 Mar - 12 Sep
1613	4 May - 28 Oct		1664	11 Veb - 6 Aug	$28 \mathrm{Jan}-21 \mathrm{Aug}$
1614	$24 \mathrm{Apr}-170 \mathrm{ct}$	${ }^{39}$ Oct	1645	${ }^{3} \mathrm{Jan}-26 \mathrm{July}$	16, Jan
1615	$3 \mathrm{Mar}-27 \mathrm{Aug}$	29 Mar - 22 Sej	360	16. June - 11 Dec	5 Jan -- 2 July
1617	20 Feb - 16 Aug	1 Aug	16.6	"Tune - 10 Nov	21 Juno
1618	9 Feb - 6 Aug		16.6		30) Apr
1619	26, June-21 Deo	11 Tuly	1670	5 Apr - 29 Sep	19 Apr
1620	15 June - 9 Deo	31 May		5 Apr -	
1621	4 June - 29 Nov	21 May	16.71	$25 \mathrm{Mar}-18$ Sep	3. Sep
1622		10 May 3 Nov	16.72	13 Mar - 7 scp	22 Aug
1623	$1: \mathrm{Apr}-8$ Oct		16.73		12 Aug
1624	${ }^{3} \mathrm{Apr}-26$ Sep	19 Mar	1674	22 Jan - 17 July	
1625	24 Mar - 16 Stp		1675	11 Jan - 7 July	23 Juno
1626	$7{ }^{7}$ Aug	26 Feb - 21 Ang	16.76	1 Jan - 25 Jume	11 June - 5 Dec
1627	31 Jau - 28 July	11 Aug	1677	17 May - 9 Nov	24 Nov
1628	20 Jan - 16 July	6 Jan - 2 n Dee	1678	6 May - 29 Oct	21 Apr - 14 Noy
1629	9 Jan -19 Noy	21 Juno - 14 DEL	1679	$26 \mathrm{Apr}-19 \mathrm{Oct}$	$10 \mathrm{Apr}$
1630	26 May - 19 Nov	10 June	1680		20 Mar
$\begin{aligned} & 1631 \\ & 1692 \end{aligned}$	$\begin{array}{r} 15 \mathrm{May}-8 \mathrm{Nov} \\ 4 \mathrm{May}-27 \end{array}$	31 May - 250 Oet	1681	4 Mar - 29 Aug	12 Sep
1633		8 Apr - 3 Oct	1688	$21 \mathrm{Feb}-18$ Aug	$1{ }^{1}$ Sep
1634	14 Mar - 7 Sep	29 Mar	1683	${ }_{27}^{11} \mathrm{Feb}$ - 71 Ang - 21 Dec	27 Jan - 2
1635	$3 \mathrm{Mar}-28$ Aug	12 Aug	1668	27 June - 210 Dec	1 July
11636	20 Feb - 16 Aug	1 Aug 26 Jan	1686	6 June - 29 Nov	
1638	26.5 June - 21 Dec	26 Jan	1687		11 May - 5 Nov
1639	15 June - 10 Dec	1 June	1688	$15 \mathrm{Apr}-9$ Oct	30 Apr
1640	15 Juae - 10 Dec	1 June	$\left.\begin{aligned} & 1689 \\ & 1690 \end{aligned} \right\rvert\,$	$\begin{aligned} & 4 \mathrm{Apr}-29 \mathrm{Sep} \\ & 24 \mathrm{Mar}-18 \mathrm{Sep} \end{aligned}$	13 Sep
1641	$26 \mathrm{Apr}-18$ Oct	3 Nov			
1642	$15 \mathrm{Apr}-8$ Oct	30 Mar	1691		28 Feb
1643 1644 1	4 Apr - 27 Sep	20 Mar	1692	$2 \mathrm{Feb}-28$ Jnly	17 Feb
(164t	10 Fcb - 7 Aug	${ }_{21}^{1 \mathrm{Sep}}$	1693 1694	$22 \mathrm{Jan}-17 \mathrm{July}$	22 June - 16 Dec
1646	$31 \mathrm{Jan}-27 \mathrm{July}$	17 Jau	1695	28 May - 20 Nov	- Dec
16.7	20 Jan	$\left\{\begin{array}{c} 5 \text { Jan } \\ 26 \text { Dec } \end{array}\right.$	1696 1697	16 May - 9 Nov 6 May - 29 Oct	21 Apr
1648	5 June - 30 Nov	21 Jnne	1698		40 ct
1649	26 May - 19 Nov	10 June - 4 Nov	1699	15 Mar - 9 Sep	23 Sep
1650	15 May - 6 Nov	25 Oct	1700	$5 \mathrm{Mar}-29 \mathrm{Aug}$	19 Feb

TABLE XVIII-(Contmued)
Lret of Eclıpses

A D	Lunar	Solar	A D	Lunar	Solail
1701	$22 \mathrm{Feb}-18 \mathrm{Aug}$	7 Fob-4 Aug	1751	9 June - 2 Dec	25 May
1702		$2 \ddagger$ July	1752 1758		${ }_{26}^{13} \mathrm{May}$ - 6 Nov
1708	$\left\{\begin{array}{c}3 \sqrt{\text { an-29 }} \text {, } \\ 23 \\ \text { Dec }\end{array}\right\}$	14 July --8 Dec	1758 1754	$17 \mathrm{Apr}-12$ Oct	
1704	17 June - 11 Dec	27 Nov	1755	28 Mar - 20 Sep	12 Mnr
1705			1756		1 Mar
1706	$28 \mathrm{Apr}-21$ Oct	12 May	1757	4 Feb - 30 July	$1+\mathrm{Agg}$
1707	$17 \mathrm{Apr}-11$ Oct	2 May	1758	24 Jan - 20 July	30 Deo
1708	5 Apr - 29 Sep	14 Sep	1759	1: Jan - 10 July	$1{ }^{1 \prime}$ Dce
1709		$11 \mathrm{Mar}-4 \mathrm{Sep}$	1760	29 May - 22 Nov	13 Juнe
1710	$13 \mathrm{Feb}-9 \mathrm{Aug}$	28 Feb			
1711	3 Feb-29 July	$1 \overline{0}$ July		18 May - 12 Nov	3 June
1712	23 Jan - 18 , July	3 July - 28 Dec	1762 1763	8 May - 1 Nov	$33 \mathrm{Apr}-7$ Oct
1713	$8{ }^{8} \mathrm{Juno}-2 \mathrm{Dec}$	17 Deo	1764	18 Mar - lu Sep	1 Apr
1714	29 May - 21 Nov 18 May - 11	${ }_{7}^{7} \mathrm{Dec}$	1765	7 Mar - 310 Allg	10 Aug
1715	18 May - 11 Nov	22 Apr - 15 Oct	1766	$24 \mathrm{FCb}-20 \mathrm{Ang}$	${ }_{5}^{5} \mathrm{Aug}$
1717	$27 \mathrm{Mar}-20 \mathrm{sep}$		1780.8	$4 \mathrm{Jan}-23 \mathrm{Drc}$	
1718 1719	$16 \mathrm{Mar}-9 \mathrm{Sep}$	${ }_{19}^{2} \mathrm{Mar}$ - 24 Sep	1769	19 June - 13 DCL	8 Juu - 4 Tune
1719 1720	6 Mar - 29 Aug	19 Feb 8 Yeb-4Aug	1780		23 Muy - 17 Nov
1721	$13 \mathrm{Jan}-9 \mathrm{July}$	$2 \pm$ July - 19 Dec	1771	${ }^{99} \mathrm{Apr}-23 \mathrm{Oct}$	
1722	$\left\{\begin{array}{c}2 \mathrm{Jaa}-20 \text { Juue } \\ 19 \text { Deo }\end{array}\right\}$	8 Dec	1772 1773 17	$17 \mathrm{Apr}-11 \mathrm{Ot}$ $7 \mathrm{Apr}-30 \mathrm{Sep}$	$\begin{aligned} & 3 \mathrm{Apr} \\ & 23 \mathrm{Mar} \end{aligned}$
1723 1724		${ }^{32}$ June			
1724 1725		${ }_{12}^{22 \mathrm{Mny}}$ - 60	1775 1774		21 Jun
1726	$10 \mathrm{Apr}-11$ Oct	${ }_{25}{ }^{\text {Sep }}$	1777	23 Jan-2v July	9 Jan - 5 July
1727		15 Sep	1778	lulupe - 1 Der	10 June - 4 Duc
1728	25 Feb - 19 Aug		1774	m) Muy - 21 Nov	14 Juue - 8 Nov
1729	$13 \mathrm{Feb}-9 \mathrm{Ang}$	$26 \mathrm{Jul}{ }^{\text {d }}$	1780	18 May - 12 Nov	27 Uct
17.50	$3 \mathrm{fob}-29$ July	15 July			
			1781 1782		$23 \mathrm{Apr}-17 \text { Oct }$ 12 Apr
1731	20 Jan - 13 Dec	$\left\{\begin{array}{c}89 \text { Deo } \\ 17\end{array}\right\}$	1782 13.1	$29 \mathrm{Mar}-21 \mathrm{Sep}$ 18 Mar - 10 Sep	12 Apr
1732	8 June - 1 Dec	$17 \mathrm{Dec}$	1784	7 Mar - 30 Aug	16 Aug
1733	28 May - 21 Nov	$13 \text { May }$	1785		$9 \mathrm{Feb}-6 \mathrm{Aug}$
1734 1795	$7 \mathrm{Apr}-20 \mathrm{ct}$	3 May 16 Oct	1796	14.Jan-11 July	30 Jau
1736	26 Mar - 20 Sep	16 Oct 40 ct	1787	$\left\{\begin{array}{c}3 \mathrm{Jan}-30 \mathrm{Juna} \\ 24 \mathrm{Dea}\end{array}\right\}$	19 Jan - 15 Jana
1737 1738	16 Mar - 9 Sep	${ }_{1}^{15 \mathrm{Mar}}$	1788		4 June
1738 1739	24 Jan - 20 July	${ }_{15}^{15} 4 \mathrm{Aug}$ (30 Dec	1689	9 May - 3 Nov	17 Nov
17 ± 0	13 Jan - 9 July	18 Dec	1790	$29 \mathrm{Apr}-23$ Oot	
$\begin{aligned} & 1741 \\ & 1742 \end{aligned}$	$\begin{aligned} & 1 \mathrm{Jan} \\ & 19 \mathrm{May}-12 \text { Nov } \end{aligned}$	$\begin{aligned} & 13 \text { June - } 8 \text { Deo } \\ & \text { 3 June } \end{aligned}$	$\begin{aligned} & 1791 \\ & 1792 \end{aligned}$	$18 \mathrm{Apr}-12 \mathrm{Oct}$	3 Apr 16 Sep
17743	19 May - 12 Nov 8 May - 2 Nov	23 May - 17 Oct	1793	25 Frb - 21 Aug	5 Sep
1744	$26 \mathrm{Apr}-21$ Uct	6 Oct	1794 1795	$14 \text { Feb - } 11 \text { Ang }$	$\begin{aligned} & \text { 11 Jan } \\ & 21 \mathrm{Jan}-16 \mathrm{Jalv} \end{aligned}$
1745 1746	7 Mar - 30 Ang	${ }_{22}^{2} \mathrm{Mpr}$	1795 1796	$\begin{aligned} & 4 \text { Feb }-31 \text { July } \\ & 14 \text { Deo } \end{aligned}$	$21 \mathrm{Jan}-16$ July $10 \mathrm{Jan}-4 \mathrm{July}$
1747	${ }_{20} \mathrm{~F}$ Feb-20 Aug	11 Mar - 6 Aug	1797	9 June - 4 Dec	24 June
1748	$1 \mathrm{~F} \mathrm{Feb}-8 \mathrm{Aug}$	25 July	1798	29 May - 23 Nov	8 Nov
1749 1750	30 Juno - 23 Dec	$14 \text { July }$	1799 1800		24 Apr
1750	19 June - 13 Dec	$8 \mathrm{Jan}$	1800	9 Apr - 2 Oct	24 Apr

TABLE XVIII-(Continued.)
List of Eclupses

A. D	Lonar	Solar	A D	Lunar	Solar
1801	$30 \mathrm{Mar}-22$ Sep	13 Apr - 8 Sep	1851	17 Jan - 13 July	28 July
1802	19 Mar - 11 Sep	28 Aug	1852	$\left\{\begin{array}{c}7 \mathrm{Jan} \\ 26 \mathrm{De} \text { - July }\end{array}\right\}$	11 Dec
1803	26 Jan - 22 July	17 Ang		${ }_{21}{ }^{26} \mathrm{Deo}$	
1805	15 Jan - 11 J JIy	26 June	1854	12 May - 4 Nov	
1806	$5 \mathrm{Jan}-30$ Jnne	16 Jnne - 10 Dec	1855	2 May - 25 Oct	16 May
1807	21 May - 15 Nct	6 June - 29 Nov	1856	$20 \mathrm{Apr}-13$ Oct	29 Sep
1808	10 May - 3 Nov	18 Nov	1857		18 bep
1809	80 Apral - 23 Oct		1858	$27 \mathrm{Feb}-24 \mathrm{~A} \mathrm{ag}^{\text {d }}$	15 Mar
1810		4 Apr	1869	$17 \mathrm{Peb}-13 \mathrm{Aug}$	29 July
			1860	$7 \mathrm{Feb}-1 \mathrm{Aug}$	18 Jaly
	10 Mar - 2 Sep $27 \mathrm{Feb}-22 \mathrm{Aug}$		1	17 D90	\{11 Jan - 8 July
1813	$15 \mathrm{Feb}-12 \mathrm{Aug}$	1 Feb			$\left\{\begin{array}{l}\text { 1 } \\ \text { Deo }\end{array}\right.$
1814	26 Dec	21 Jan - 17 July	1882	$12 \mathrm{Jane}-6 \mathrm{Dec}$	21 Dec
1815	21 June-16 Deo	7 July	1863	2 Juue-25 Nov	17 Mry
1816	10 June - 4 Deo	19 Nor	1864	$11 \mathrm{Apr}-40 \mathrm{ct}$	19 Oct
1817	30 May $21 \mathrm{Apr}-14$	${ }^{16 \mathrm{May}} \mathrm{6}$ - 9 Nov	1866	$31 \mathrm{Mar}-2+\mathrm{Sep}$	$16 \mathrm{Mar}-8$ Oct
1818	$21 \mathrm{Apr}-140 \mathrm{ct}$ $10 \mathrm{Apr}-30 \mathrm{ct}$	6 May	1867	20 Mar - 14 Sop	6 Mar
1820	$29 \mathrm{Mar}-22 \mathrm{Sep}$		1868		$28 \mathrm{Feb}-18$ Aug
			$\left\{\begin{array}{l} 1869 \\ 1870 \end{array}\right.$	$\begin{aligned} & 28 \text { Tan - } 23 \mathrm{July} \\ & 17 \mathrm{Jan}-12 \mathrm{July} \end{aligned}$	$\begin{array}{r} 7 \mathrm{Aug} \\ 22 \mathrm{Dec} \end{array}$
1821		4 Mat			
1822	${ }^{6} \mathrm{Feb}-{ }^{3} \mathrm{Aug}$		187_{1}	$6 \text { Jan - } 2 \mathrm{Ju} y$	18 June - 12 Dec
1823	$26 \mathrm{Jan}-23 \mathrm{July}$	11 Feb - 8 July	1872	22 May - 15 Nov	6 June
1824	16 Jau - 11 July	26 June - 20 Dec	1873	12 May - 4 Nov	26 May
1825	1 June-25 Nor	16 June	1874	1 May - 25 Oct	10 Oct
1826	21 May - 14 Nor	$2^{\prime \prime}$ Nov	1875		$6 \mathrm{Apr}-29 \mathrm{Sep}$
1827	11 May - 3 Nov	26, Apr	$\begin{aligned} & 1876 \\ & 1877 \end{aligned}$	$10 \mathrm{Mar}-3 \mathrm{Sep}$ $27 \mathrm{lab}-23 \mathrm{Alg}$	
1829	20 Mar - 13 Sep	28 Sep	1878	17 Feb - 13 Aug	29 July
1830	9 Mar - 2 Sep	23 Feb	$\left\lvert\, \begin{gathered} 1879 \\ 1880 \end{gathered}\right.$	$\begin{aligned} & 28 \mathrm{Dec} \\ & 22 \mathrm{June}-16 \mathrm{Dec} \end{aligned}$	$\left\|\begin{array}{l} 22 \mathrm{Jan}-19 \mathrm{July} \\ 11 \mathrm{Jan}-31 \mathrm{Dec} \end{array}\right\|$
$\begin{aligned} & 1831 \\ & 1832 \end{aligned}$	$26 \text { Feb }-23 \text { Aug }$	27 July	1881	12 Junc - 5 Dec	${ }^{28} \mathrm{May}$ May - 11 Nav
1833	$\left\{\begin{array}{c}6 \text { Jan } \\ 26 \mathrm{Dec}\end{array} \mathrm{T}^{\text {July }}\right.$ ($\}$	17 July	1883	22 Apr - 16 Oct	$17 \mathrm{Mby}-11 \mathrm{Nov}$ 31 Oct
	21 June- 16 Dec		1884	10 Apr -4 Oct	27 Mar - 19 Oot
1835	10 June	27 Mny-20 Nov	1885	30 Mar - 24 Sep	
1836	1 May - 24 Oct	10 May	1886		29 Ang
1837	$20 \mathrm{Apr}-1 \mathrm{~J}$ Oet	4 May	1887	$8 \mathrm{Feb}-3 \mathrm{Aug}$	19 Aug
1838	10 Apr - 3 Oct	Mar-	1888	26 Jan - 23 July	
1839		$15 \mathrm{Mar}-7 \mathrm{Sep}$	1889 1890	17 Jan - 12 July	22 Dec
1840	$17 \mathrm{Feb}-13 \mathrm{Aug}$	$4 \mathrm{Mar}_{\mathrm{B}}$	1890	3 June - 26 Nov	17 June
1841	$6 \mathrm{Fob}-2 \mathrm{Aug}$		$\begin{aligned} & 1891 \\ & 1892 \end{aligned}$	23 May - 16 Nov 11 May - 4 Nov	6 June
1842	$26 \mathrm{Jan}-22 \mathrm{July}$	$8 \mathrm{July}$	1893		16 Apr
1843	12 June - 7 Dec	21 Deo	1894	$21 \mathrm{Mar}-15 \mathrm{Scp}$	6 Apr - 29 Sep
1844	31 May - 25 Nov		1895	11 Mar - 4 Sep	$26 \mathrm{Mar}-20 \mathrm{Aug}$
1845	$21 \mathrm{May}-14 \mathrm{Nov}$	$6 \mathrm{May}$	1896	$28 \mathrm{Feb}-23 \mathrm{Aug}$	9 Aug
1846	$31 \mathrm{Max}-24$ Sep	$\begin{array}{r} 25 \mathrm{Apr}-20 \text { Oct } \\ 9 \mathrm{Oct} \end{array}$	1897		
1848	19 Mar - $138 \mathrm{E}_{\text {ep }}$	27 Sep	1898	$\left\{\begin{array}{c}8,27 \\ 127 \mathrm{Deo}\end{array}\right\}$	22 Jan
1849	$9 \mathrm{Mar}-28 \mathrm{f}$	$\begin{aligned} & 29 \mathrm{Feb}^{2} \mathrm{Feb}-7 \mathrm{Aug} \end{aligned}$	$\left\{\begin{array}{l} 1899 \\ 1900 \end{array}\right.$	$\begin{aligned} & \text { 23 Jnne }-17 \mathrm{Dec} \\ & 13 \text { Jane } \end{aligned}$	11 Jan - 8 Jnne 28 May - 22 Nov

TABLE XVIII.-(Concluded)
List of Eclupses

A D	Lunar	Solar	A D	Lumar	Solar
1901	3 May - 27 Oct	18 May - 11 Nov	1931		1 Sep
1902	$22 \mathrm{Apr}-17$ Oct	31 Oct	1952	10 Fob - 5 Aug	$25 \mathrm{Feb}-20 \mathrm{Aug}$
1903	$11 \mathrm{Apr}-6$ Oct	29 Mar - 21 Sep	1953	$29 \mathrm{Jan}-26 \mathrm{Jujy}$	$14 \mathrm{Feb}-11$ July
1904		17 Mar	1954	19 Jan - 16 July	30 Jave - 25 Dec
1905	$19 \mathrm{Feb}-15 \mathrm{Aug}$	30 Aug	1955	29 Nov	20 June - 14 Dec
1906	9 Feb - ${ }^{4}$ Aug	20 Aug	1956	24 May - 18 Nov	2 Deo
1907	$29 \mathrm{Jan}-25 \mathrm{July}$	14 Jan	1957	13 May - 7 Nov	24 Oct
1908	7 Dec	27 June - 22 Dec	1958	${ }^{1}$ May	19 Apr
1909	4 June - 27 Nov	17 June	1959	$24 \mathrm{Mar}-17 \mathrm{Sep}$	2 Oct
1910	$24 \mathrm{May}-17 \mathrm{Nov}$	2 Nor	1060	13 Mar - 5 Sep	21 Sep
1911		22 Oct	1961 1962	2 Mar - 26 Aug	$\begin{array}{r} 11 \\ 4 \mathrm{Fug}-31 \mathrm{July} \end{array}$
1912	$1 \mathrm{Apr}-26 \mathrm{Bep}$	$17 \mathrm{Apr}-10$ Oct		\{ 9 Jan - 6 July \}	
1913	$22 \mathrm{Mar}-15 \mathrm{Sep}$		1967	$\{30 \mathrm{Dec}$, $\}$	25 Jan
1914	11 Mar - 4 Sep	21 Aug	1964	25 June - 19 Dec	$9 \mathrm{July}-4$ Deo
1915		14 Feb - 10 Aug	1965		24 Nov
1916	$18 \mathrm{Jan}-15 \mathrm{July}$	3 Feb	1966	${ }^{4} \mathrm{May}-29$ Oct	20 May - 12 Nov
1917	$\left\{\begin{array}{c}8 \text { Jan-4 July } \\ 28 \text { Dec }\end{array}\right\}$	23 Jan - 19 Jnne	1907	$\begin{aligned} & 2 \pm \mathrm{Apr}-1800 \mathrm{l} \\ & 13 \mathrm{Anr}-22 \end{aligned}$	9 May
1918	24 June	$8 \text { June - } 3 \text { Dee }$	196	$\{\operatorname{Sep}-6$ Oot $\}$	
1919	$8 \text { Nov }$	$29 \mathrm{May}-22 \mathrm{Nov}$	1969		$18 \text { Mar }$
1820	8 May - 27 Oct	10 Nov	1970	$21 \mathrm{Feb}-17 \mathrm{Aug}$	$7 \mathrm{Mar}$
1921	22 Apr - 16 Oct	Apr - 1 Oct	$\begin{aligned} & 1971 \\ & 1972 \end{aligned}$	$\begin{aligned} & 10 \mathrm{Fob}-6 \mathrm{Aug} \\ & 30 \mathrm{Jan}-26 \mathrm{July} \end{aligned}$	$25 \mathrm{Feb}-22 \mathrm{July}$
1922		28 Mar	1973		4 Jan - 30 June
1923	$3 \mathrm{Mar}-26$ Aug	17 Mar - 10 Sep	1973		24 Dec
1924	20 Feb - 14 Aug	30 Aug	1974	4 June - 29 Nov	13 Dec
1925	$8 \mathrm{Feb}-4 \mathrm{Aug}$	24 Jan	1975	25 May - 18 Nov	11 May 230
1926	19 Dee	14 Jan - 8 July	1976	13 May	$29 \mathrm{Apr}-23 \text { Oct }$
1927	15 June - 8 Dec	29 June 12 Nov	1977	${ }_{24}{ }^{\text {Apr - }} \mathbf{2 7} \mathrm{Sep}$	$18 \mathrm{Apr}$
1928	3 June- 27 Nov	${ }_{19} 9 \mathrm{May}$ - 12 Nov ${ }^{\text {Nay }} 1 \mathrm{Nov}$	1978 1979	24 Mar - 16 Sep 13 Mar - 6 Sep	$\begin{array}{r} 28 \mathrm{Oct} \\ 26 \mathrm{Feb} \end{array}$
1929 1930	$\begin{aligned} & 23 \mathrm{May} \\ & 13 \mathrm{Apr}- \end{aligned}$	9 May - 1 Nov	1979 1980	13 Mar - 6 Sep	$\begin{aligned} & 26 \mathrm{Feb} \\ & 16 \mathrm{Feb} \end{aligned}$
			1981	17 July	31 July
1931	${ }_{2} \mathrm{Apr}-26 \mathrm{Sep}$	17 Apr	1982	$\left\{\begin{array}{c}9 \text { Jan - } 6 \text { July }\end{array}\right\}$	20 July - 15 Dec
1932 1939	22 Mar - 14 Sep	$2+\mathrm{Feb}-21 \mathrm{Aug}$	1985	${ }_{25} \mathrm{June}^{30 \mathrm{Sep}}$	11 June - 4 Dec
1934	$30 \mathrm{Jan}-20 \mathrm{Julv}$	$1+\mathrm{Feb}-10 \mathrm{Aug}$	$198+$		36 May
1935	19 Jau - 16 July	1	1 15	${ }^{4}$ May - 28 Out	12 Nov
1936	8 8 Jnn - 4 July	$1 \begin{aligned} & 19 \\ & y \\ & y\end{aligned}$		24 Apr - 17 Oct	
1937	18 Nor 14 May 7 Nor	${ }_{22}^{2}$ Nec	1987	27 Aug	$29 \mathrm{Mar}-23$ Sep 18 May - 11 Sep
1934	* May - 28 Oct	19 Apr	1984	20 Feb - 17 Aug	18 May-11 Sep
1940	22 Apr	1 Oot	1990	$9 \mathrm{Feb}-6 \mathrm{Aug}$	22 July
1941	13 Mar - 5 Sep	21 Sep	1991	$30 \mathrm{Jan}-31 \mathrm{Dec}$	
1942	$2 \mathrm{Mar}-26 \mathrm{Aug}$	10 bep	1992	15 June - 9 Dee	24 Deo
1943	$20 \mathrm{Feb}-15 \mathrm{Aug}$	${ }^{4} \mathrm{Feb}$	1493	4 June - 29 Nov	21 May
1944	29 Dec 19 dec	$25 \mathrm{Jan}-20 \mathrm{Jaly}$	194	25 May	10 May - 3 Nov
1945	${ }^{25}$ June - 19 Dec	14 Jan - 9 Juty	1995	${ }_{15}^{15} \mathrm{Apr}$ 3 ${ }^{3} \mathrm{Apr}-27 \mathrm{sep}$	${ }_{12}^{29} \mathrm{Aprt}-24$ Oot
1946	11 3 June - 8 Dule	20 May	1996	${ }_{16}^{3} \mathrm{Apr}-27 \mathrm{Sep}$	12 Oct
1948	23 Apr - 18 Oct	9 May - 1 Nov	1998		$26 \mathrm{Feb}-22 \mathrm{Aug}$
1949	13 Apr - 7 Oct	28 Apr	1999	28 July	16 Feb - 11 Aug
1950	2 Apr - 26 dep	12 Sep	2000	21 Jan-16 July	31 July

TABLE XIX

THE DAKHINI CYCLE OF JUPITER.
The Jovian cycle of 60 years, as used in Southern India, is a simple period of 60 solar years, in which year has a separate name. There are no omitted years as in the Noithein reckoning, and the cycle has no longer any connection with Jupiter's revolution The cycles begin in' the following years A D, with the year named Piabhava

A D	7	-	-	-	-	-	-
	67	367	667	967	1267	1567	1867
	127	427	727	1027	1327	1627	1927
	187	487	787	1087	1387	1687	1987
	247	547	847	1147	1447	1747	2047
	307	607	907	190%	1507	1807	2107

The names of the 60 years of the cycle of Jupiter are the same both in Northern and Southern India They are as follows -

1	Prabhava	16	Chitrabhana	31	Hemalamba	46	Paridhârm
2	Vibhava	17	Subhânu	32	Vilambin	47	Pramédn
3	Sukla	18	Tâana	33	Vikârın	48	Ananda
4	Pramoda	19	Pâthiva	34	Sarvart	49	Rakshosa
5	Prajapatı	20	Tyays	35	Plava	50	Anala
6	Angıras	21	Sarvajit	36	Sabhakrit	51	Pingala
7	Srimukha	22	Sarvadhârın	37	Snbhakrit	52	Kulayutka
8	Bhava	23	Virodhia	39	Krodhı	53	Stduhartha
9	Yuvan	24	Vikita,	39	Vıbwîvasu	54	Randra
10	Dhatar	25	Khara	40	Parâbhava	5	Darmati
11	Iswara	26	Nandana	41	Plavanga	56	F ndubhi
12	Babudhanya.	27	Vıaga	42	Kilaka	57	U0
13	Pramathin	28	Jaya	43	Saumya	58	Fir'taksta
14	$\nabla_{\text {Vlirama }}$	29	Manmatha	44	Sádbarana		Kr tha
15	Vrisha	30	Darmukha	40	Vurodhakrit	60	Kıb ${ }_{\text {cya }}$

As an example of the use of this Dakhin cycle, I may cite the date of the Kurda inseription (Royal Assat Sor Jour, III, 104), which 18 recorded as Sake 894 (AD 972), with the Jupiter year named Angiras As this is the 6 th name, we obtan the date intended by adding 5 years to the lst year of the cycle, which began previously to AD 972 This is A © 967 , to whel addung 5 we get 972 AD, in exact accordance with the Sake date of 894

TABLE XX.

INITIAL DAYS OF ILAHI YEARS.

The Ilahi is a tiue solar year beginning with the Nauroz (in March) The initial days in the Hipra reckoning are taken from Dowson's Table as given by Abul Fazl The corresponding Christian dates have been calculated. and a few palpable exross have been corrected

ILAHt		Months	A H	March	A	A D	Itahi		Moutha	A 7	March		A D
1	27	Rabi II	963	Tues	10	1586	26	5	Sofar	989	Sat	11	1881
2	9	Jumadi I	964	Wed	10	1557	27	15	\cdots	990	S	11	1682
8	20	-	985	Thur		1588	28	28	-	991	Mnu	11	1583
4	2	Jumadi 11	966	Frid	10	1689	29	8	Rabl I	992	Tues	10	1584
5	12	- -	967	S	11	1560	30	19	-	998	Thar	11	1885
6	23	-	968	Toes	11	1881	81	29	-	994	Thar	10.	1886
7	5	Rajail	969	Wed	11	1562	32	11	Rabi II	995	Sat	17	1887
8	10	-	970	Thur	11	1663	38	22	-	998	Mon	11	1888
0	27		971	Sat	10	1584	34	4	Jumadi I	907	Tues	11	1589
10	8	Shaban	972	s	11	1565	35	24	-	998	Wed	11	1590
11	18	--	973	8	10	1568	36	24	-	999	Wed	10	1591
18	29	-	974	Tues	13	1567	37	8	Jumadr II	1000	Thar	10	1592
13	11	Ramzâa	975	Wed	10	1568	88	17	-	1001	5	11	1598
14	22		976	Thur	10	1669	39	28	-	1002'	Mon	11	1594
16	2	Shauàl	977	Frid	10	1570	40	9	Rajab	1003	Mon	10	1595
16	14	-	978	S	11	1571	41	20	-	1004	Wed	10	1696
17			979	Tues	11	1572	42	2	Shabdn	1005	Frid	11	1697
- 6	6	Zulkada	9 co	Tues	110	1575	43	18		1006	Sat	11	1598
		-	981	Wed	10	1674	44	23	-	1007	\mathbf{S}	11	1699
20		\longrightarrow	982	Thur	10	1575	45	4	Bamatin	1008	8	9	1600
21	0	Zildhida	983	Sat	10	1576	48	15	-	1009	Tues	10	1601
22	20	-	984	8	10	1677	47	20°		1010	Wed	10	1602
23	2	Maha ram	086	Tues	11	1578	48	8	Shawd	1011	Wed	9	1608
24	12		987	Wed	11	1579	49	17		1012	Frid	9	1604
25	24		988	Frid		1580	50	28	-	1018	Sat	θ	1605

TABLE XXI.

THE ABJAD.
A favourite mode of recording Higra dates is by the numencal values of the letters in some short phiase, or chronogiam, descriptive of the event commemorated This system 19 called A byad, fiom the first four letters of the Hehrew alphabet, from which the scheme was boriowed, namely, a b,j, d. The whole scheme is as follows -

Letters	Values	Letters	Valuen	Letters	Values
a	1	2	10	k	100
b	2	\boldsymbol{k}	20	,	200
3	3	1	80	sh	\$00
d	4	*	40	t	400
n	5	\cdots	80	*	500
$0 n$	6	$*$	60	4h	600
t	7	a, n	70		
h	8	f	80	2	700
t	9	n	90	$2 m$	800
				Σ	900
				gh	1000

Occasionally the chronogiams were very teraely and happily expressed, and the fortunate inventors wete usually rewarded veiy liberally The following are rather favourable specimens of these Abyad chronograms

1- Wafat Furoz records the "Death of Firoz" in A. H 790
2-Masjld Jami ul Shark records the bunlding of the Great Mosque at Jaunpur in A H 852
$3-A z$ atash murd, "he died by fire," recoids the date of the death of Sher Shah, who was killed p+ the siege of Kâlinjar by the bursting of a shell

4-Zawal Khusroan, or the "Ruin of the Kings," was invented by Ghulam Alı Hindu Shah, the fa 'Jer of the historian Ferishta, to commemorate the deaths, in A H 961, of the three kings,*

> Mahmud Shâh of Gnjazat
> Burban Nizfin Shah of Ahmednagar
> Islam Shak, Suz, of Delbi
s-Pul Muhammad Mı nom Khan, or "Bridge of Muhammad Muním Khan," at Jaunpui, gives the date A H 975

[^55]6 - In the old town of Hilsa in Bihâr, near the tomb of the holy Saint Jaman Madârı, there $1 s$ an upright stone with the date of A H 1013, recoided in four different ways, as follows *

In Arabic	alf wa kuls n ghr $=1000+3+10=1013$ A H		
" Persian	havir wa nit dah $=1000+13$	$=1013$	
, Numerala	1013	$=1013$	"
"Abjad	d w b a zw z		
Values below	$4+6+2+1+800+200$	~ 1043	

The values of the Abjad letters ane engraved on the stone in numerals immediately below the letters

[^0]: Every nation forma an ora from some remarkable evenl, such ws change in reltgion, - the acoceanton of ore family to the throne, upon the extinction or expulsion of another, great eartiquake or a flood -AHUL-FaEL.

[^1]: * Indian Antiquaty, Vol XI, p. 322

[^2]: * Sce miy account of the Seleukudan era in thie volume

[^3]: * For these two ingcriptione of Jaika, moe my aocounts of the Gupta and Vikramíditya eras in this volume
 † Baber's Momoirs, translated by Eiskine, p 258
 Jervin's Woighta, Meatures, and Coins of India, p. 94, Cowajoe Patell's Chronology.

[^4]: * So also in tine Surya Buadhânta, yi, 19, Variha Mihira apeaks of the year as a 'wheel
 \dagger Wilmon's Rig Veda, II, 143, and aleo II, 131

[^5]: * Whlson's Rig Veda, I, 65
 \dagger History of Anclent Sanskrit Laterature, p 212
 \ddagger Dr Kern s Iranslation of the Brihat Sanhita, C vin 24
 s Yajuavalkya also [C 11, b] alys, that a petitiou made to the king should give the year, montb, half month, and day
 \Vita Alexandri, C vil, 9 "Menses in quanos denos descripserunt dien anni plene apatia servant Lunæ oursu notent tempora, non, ut plerique, oum orbem adus implevit, sed cuin se curvare ccept in cormus"

[^6]: "Abul Fanl, Gladwin's Translation of Ain-1 Akbarr, I, 266, givee these three namea, and aignifioantly adde, "throughout Hindustan taey do not reokon more then three mosmons of the jear."

[^7]: - Beinand, Fragments Araber ot Pernaus, p 147
 + Raja Tarangini, 1, 62

[^8]: * Gledwn's Ain-i-Akbari, I, 263 nee also II, 8891
 \dagger This namber should be 4801 , or $4696+105$, and not 4881 .

[^9]: * Raja Taranginı, I, 56
 \dagger Raja Turangni, I, 51
 \ddagger Reinaud, Fragments A rabes et Persaus, p 197
 § Vishnu Purana, IV, C. 24, or Hall's Edition, Vol. IV, p, 389

[^10]: * Wilmon's Viahnu Pusana by Hall + Colebrooke's Essays, II, 313-14-10,

[^11]: - Colebrooke' Essays, II, 313

[^12]: \dagger Bemand, Fragments Arabes et Perans, p. 147

[^13]: - See Colebrooke's Resays, II, 814 and 318.

[^14]: * Belsaud, Fragmenta Arabee et Permans, p 140

[^15]: * Remaud, Fragmorta Arabes et Perana, y 146

[^16]: * Warren's Kala Sankâlita, p $199 \quad \dagger$ Prınsep's Useful Tables, p 27.
 \ddagger Datis in Asiatio Researchea, III, p 78

[^17]: - Bengal Abiatio Society 8 Journal, XXVIII, pp 45
 + I have aince found an ansoription dated in Vikrama Baka.

[^18]: * Bee Arohmological Survey of Indar, XI, 126
 \dagger Tibetan Grammar, p 195, Prineep a Useful Tables, p 30, quotes Ceoma, Bengal Ashatio Society's Journal, III, 6, but the passage as not there

[^19]: * For the former, 把 Abiatic lieseurches, III, 217, and for the latter, the Kila Sunkâlıta, p 197
 \dagger Sce Archmological Sarvey of Inda, Fol X, Appendiz

[^20]: "Saptaryabda sato ekâdasa bhagaıh panchabhna adhike gate Gurn yukta Nakshatra mấa samytua cuasha dnayumâdhakam bhavatı"

[^21]: - Kala Sankulita by Colonel Warren, p 298.
 \dagger Imedun Ant ${ }^{\prime}$ quay y, 1882, p 271

[^22]: * Julıon's Hwen Theang, II, 395
 \dagger Record of Buddhastic Kingdoms, translated by Giles, C vis

[^23]: * Academy, 19th March 1881, and Indian Antrquary, May 1881, p 153
 \dagger See Burnouf

[^24]: * Dr Stovenson's Kalpa Sutra, Preface, p via, and note, p 96.
 \dagger Dr Bhau Dajı, Bombay Absatio Sonety в Journal, IX, 149
 \ddagger Royal Asiatic Sicrety's Transactions, LII, 958

[^25]: - Fanti Rellenion, III, p 311
 † Ordo Beoloram, by Henry Browne, Pp 487 and 488 Bee also Fanti Hallanioi, III p. ${ }^{378}$

[^26]: - Clinton, Fasti Hellenloi, III, p 353
 \dagger These proofa are taken from Browne's Ordo Saclormm, p. 461

[^27]: * Cownesjee Patell, p 26, of oourge copies Prineep. † Ordo Smolorum, p 461

[^28]: * Thid coin is engraved in Longgeriers anpubhithed book un the Parthan comage, Plite XIV, Fig 9

[^29]: - Bactrian Coins and Indian Dates, in Lloyal Asiatic Souliy a Journal, New Series,

[^30]: - See 2 Maccabeer, XI p 21
 \dagger Clinton, Fasts Hellenici, I, p 336
 at the end of February of Greeke as well as Romane

[^31]: * Ashyrian Inscoveries, $p 189$
 \uparrow Clinton, Fasta IIellenici, III, 360
 \ddagger Bee Numumatic Chromucle, New Serles, 1868, p 257

[^32]: * Remaud Fragmenta Draber et Persana, pp 145146

[^33]: - Induan Antrywary, VoI XII, p 155
 \dagger Ibrd, Val. V, p 114.

[^34]: - Dr Bhan DAjr, in Bombay Aeiatio Socrety's Jouraal, Vol VI, 29-30
 \dagger Bee Prineep's Useful Tables, p 82, where the origin of the error is pointed ont.
 \ddagger Colebrooke's Eesays, Vol II, p. 264.

[^35]: * Archmologionl Survey of India, Vol X, Appendix.

[^36]: * Budha Gupta'n insoription on tho Pillar at Eran baars the date of Sainvat $16 \mathrm{~g}_{\mathrm{n}}$, Thuredany, 12th Arhedha-Sudi.

[^37]: * See Archacologional Survey of Indsa, Vol X, p. 125

[^38]: *Induat Antiquary, 1873, p 312 Noten by Mejor Watmon

[^39]: * Renaud, Fragmenta Arabes et Perana, p 139
 \dagger See Archæological Survey, X, 101, for other aneriptions of Bhoja Deva, Gpalior A D 876, and Deogarh AD 862 The Raja Tarangini aleo places him between 883 and 901 A D
 \pm Jodian Antiquary, Vol. IX, p 169, et afq

[^40]: * For the first plate, soe Bengal Asintio Society s Journal, XXXIII, 321, and for the mecond plete, see the same Jounnal, XVII, 71

[^41]: * Woothonse's cocount of the Eijra Ere Will be found in "Weighta and Maesuren of will Itations,"一 Weale, 1868.

[^42]: - Brown's Cyolio Tables, pp 2, 67.

 4 Boysl Andatio Society's Journal, IV, 14 .

[^43]: * Prefaoe to the Digest of Indian Law--Easaya, I, 472.
 † Buchanan's Eastern Indis, III, 41 and 189

[^44]: * Notioes of Sanskrit Manusoript, III, pp 134, 14θ
 † Bengal Asuatio Society's Joarmal, 1868, p 187.
 $\$$ Eintern India, III, p. 806

[^45]: - Bengal Absatio Society's Journal, Vol. V, p. 657
 + Ibia, 1878, p. 896.

[^46]: * Benfel Aciatio Sooity's Jourmal, 1878, p. 898.

[^47]: - Jamen Pringep givee 11 th April $\$ 856$ ee the 1 st of Vaisthh, but this is clearly a mistake, as his own Tablen give the mame date for the beginning of the Faali jear in 1886. - Unoful Tables, pe 26

[^48]: * Niz\&muddin in Elisot's Mnhammadan Hastorians, ∇, p 241
 \dagger Numismata Orientalia, Vol IL, p 640

[^49]: - Blochmar i's Aid-1-AEbari, p 105

[^50]:

[^51]: * Colebrooke's Essays, II, p 264 He has used the elroneous equation of 50 Instead of 57 to reduce the Sampat year to Christian reckoning

[^52]: 6,910 days in 19 years *The stary desote leag years of Julan reckoning

[^53]: † Agrahavana oinitted，and Kâruka intercalary
 \ddagger Yausha omitted，and Ybalguna meroalars．

[^54]:

[^55]: * Buges Ferishta, Vol IV, 152 Islam Sheh died wathin a few days of the end of A H 960

